The increasing penetration of renewable energy on the transmission and distribution power network is driving the adoption of two-way power flow control, data and communications needed to meet the dependency of balanci...The increasing penetration of renewable energy on the transmission and distribution power network is driving the adoption of two-way power flow control, data and communications needed to meet the dependency of balancing generation and load. Thus, creating an environment where power and information flow seamlessly in real time to enable reliable and economically viable energy delivery, the advent of Internet of Energy(IoE) as well as the rising of Internet of Things(IoT) based smart systems.The evolution of IT to Io T has shown that an information network can be connected in an autonomous way via routers from operating system(OS) based computers and devices to build a highly intelligent eco-system. Conceptually, we are applying the same methodology to the Io E concept so that Energy Operating System(EOS) based assets and devices can be developed into a distributed energy network via energy gateway and self-organized into a smart energy eco-system.This paper introduces a laboratory based IIo T driven software and controls platform developed on the NICE Nano-grid as part of a NICE smart system Initiative for Shenhua group. The goal of this effort is to develop an open architecture based Industrial Smart Energy Consortium(ISEC) to attract industrial partners, academic universities, module supplies, equipment vendors and related stakeholder to explore and contribute into a test-bed centric open laboratory template and platform for next generation energy-oriented smart industry applications.In the meanwhile, ISEC will play an important role to drive interoperability standards for the mining industry so that the era of un-manned underground mining operation can become the reality as well as increasing safety regulation enforcement.展开更多
Electric vehicles(EVs)have received significant attention because of the potential energy savings and emission reductions they enable.However,current studies and demonstrations have focused mainly on specific technolo...Electric vehicles(EVs)have received significant attention because of the potential energy savings and emission reductions they enable.However,current studies and demonstrations have focused mainly on specific technologies and equipment types,which cannot in themselves solve the predicaments facing EVs.This study points out that EVs will form a large,complex system that needs to be optimized over different aspects to compete with traditional vehicles.Therefore,wholesystem thinking is needed to support the development control of EVs,with a broader scope than operational control,and the core issue is the interaction between EVs and power grid,including their coordinated development and operational management.For development control of EVs,a target system and a step-wise optimization method are presented,as well as the basic principles for designing the target system.There are two key barriers in EVs’development:the research and mass production of highperformance power batteries,and the formulation of a favorable mechanism to capture benefits and encourage development.To address the problems of EV development,a promotion method that combines franchising with moderate competition is proposed.The concepts and methods developed in this study can facilitate the research and development of EVs.展开更多
基金supported by National Key Research and Development Program(2016YFE0102600)National Natural Science Foundation of China(51577096,51477082)
文摘The increasing penetration of renewable energy on the transmission and distribution power network is driving the adoption of two-way power flow control, data and communications needed to meet the dependency of balancing generation and load. Thus, creating an environment where power and information flow seamlessly in real time to enable reliable and economically viable energy delivery, the advent of Internet of Energy(IoE) as well as the rising of Internet of Things(IoT) based smart systems.The evolution of IT to Io T has shown that an information network can be connected in an autonomous way via routers from operating system(OS) based computers and devices to build a highly intelligent eco-system. Conceptually, we are applying the same methodology to the Io E concept so that Energy Operating System(EOS) based assets and devices can be developed into a distributed energy network via energy gateway and self-organized into a smart energy eco-system.This paper introduces a laboratory based IIo T driven software and controls platform developed on the NICE Nano-grid as part of a NICE smart system Initiative for Shenhua group. The goal of this effort is to develop an open architecture based Industrial Smart Energy Consortium(ISEC) to attract industrial partners, academic universities, module supplies, equipment vendors and related stakeholder to explore and contribute into a test-bed centric open laboratory template and platform for next generation energy-oriented smart industry applications.In the meanwhile, ISEC will play an important role to drive interoperability standards for the mining industry so that the era of un-manned underground mining operation can become the reality as well as increasing safety regulation enforcement.
基金This work was partially supported National High Technology R&D Program of China(863 Program)(No.2012AA050804).
文摘Electric vehicles(EVs)have received significant attention because of the potential energy savings and emission reductions they enable.However,current studies and demonstrations have focused mainly on specific technologies and equipment types,which cannot in themselves solve the predicaments facing EVs.This study points out that EVs will form a large,complex system that needs to be optimized over different aspects to compete with traditional vehicles.Therefore,wholesystem thinking is needed to support the development control of EVs,with a broader scope than operational control,and the core issue is the interaction between EVs and power grid,including their coordinated development and operational management.For development control of EVs,a target system and a step-wise optimization method are presented,as well as the basic principles for designing the target system.There are two key barriers in EVs’development:the research and mass production of highperformance power batteries,and the formulation of a favorable mechanism to capture benefits and encourage development.To address the problems of EV development,a promotion method that combines franchising with moderate competition is proposed.The concepts and methods developed in this study can facilitate the research and development of EVs.