Low-dimensional transition metal dichalcogenides(TMDs) have unique electronic structure, vibration modes, and physicochemical properties, making them suitable for fundamental studies and cutting-edge applications such...Low-dimensional transition metal dichalcogenides(TMDs) have unique electronic structure, vibration modes, and physicochemical properties, making them suitable for fundamental studies and cutting-edge applications such as silicon electronics, optoelectronics, and bioelectronics. However, the brittleness, low toughness,and poor mechanical and electrical stabilities of TMD-based films limit their application. Herein, a TaS_(2) freestanding film with ultralow void ratio of 6.01% is restacked under the effect of bond-free van der Waals(vdW) interactions within the staggered 2H-TaS_(2) nanosheets.The restacked films demonstrated an exceptionally high electrical conductivity of 2,666 S cm^(-1), electromagnetic interference shielding effectiveness(EMI SE) of 41.8 dB, and absolute EMI SE(SSE/t) of 27,859 dB cm^(2) g^(-1), which is the highest value reported for TMD-based materials. The bond-free vdW interactions between the adjacent 2H-TaS_(2) nanosheets provide a natural interfacial strain relaxation, achieving excellent flexibility without rupture after 1,000 bends. In addition, the TaS_(2) nanosheets are further combined with the polymer fibers of bacterial cellulose and aramid nanofibers via electrostatic interactions to significantly enhance the tensile strength and flexibility of the films while maintaining their high electrical conductivity and EMI SE.This work provides promising alternatives for conventional materials used in EMI shielding and nanodevices.展开更多
Replacing the conventional carbonate electrolyte by solid-state electrolyte (SSE) will offer improved safety for lithium-ion batteries.To further improve the energy density,Silicon (Si) is attractive for next generati...Replacing the conventional carbonate electrolyte by solid-state electrolyte (SSE) will offer improved safety for lithium-ion batteries.To further improve the energy density,Silicon (Si) is attractive for next generation solid-state battery (SSB) because of its high specific capacity and low cost.High energy density and safe Si-based SSB,however,is plagued by large volume change that leads to poor mechanical stability and slow lithium ions transportation at the multiple interfaces between Si and SSE.Herein,we designed a self-integrated and monolithic Si/two dimensional layered T_(3)C_(2)T_(x)(MXene,T_(x) stands for terminal functional groups) electrode architecture with interfacial nitrogen engineering.During a heat treatment process,the polyacrylonitrile not only converts into amorphous carbon (a-C) that shells Si but also forms robust interfacial nitrogen chemical bonds that anchors Si and MXene.During repeated lithiation and delithiation processes,the robust interfacial engineered Si/MXene configuration enhances the mechanical adhesion between Si and MXene that improves the structure stability but also contributes to form stable solid-electrolyte interphase (SEI).In addition,the N-MXene provides fast lithium ions transportation pathways.Consequently,the Si/MXene with interfacial nitrogen engineering (denoted as Si-N-MXene) deliveres high-rate performance with a specific capacity of 1498 m Ah g^(-1) at a high current of 6.4 A g^(-1).A Si-N-MXene/NMC full cell exhibited a capacity retention of 80.5%after 200 cycles.The Si-N-MXene electrode is also applied to SSB and shows a relative stable cycling over 100 cycles,demonstrating the versatility of this concept.展开更多
It is urgent to develop high-performance cathode materials for the emerging aqueous zinc-ion batteries with a facile strategy and optimize the related components.Herein,a Ca0.23V2O5·0.95 H2O nanobelt cathode mate...It is urgent to develop high-performance cathode materials for the emerging aqueous zinc-ion batteries with a facile strategy and optimize the related components.Herein,a Ca0.23V2O5·0.95 H2O nanobelt cathode material with a rather large interlayer spacing of 13.0 A is prepared via a one-step hydrothermal approach.The battery with this cathode material and 3 M Zn(CF3SO3)2 electrolyte displays high specific capacity(355.2 mAh g^(-1) at 0.2 A g^(-1)),great rate capability(240.8 mAh g^(-1) at 5 A g^(-1)),and excellent cyclability(97.7% capacity retention over 2000 cycles).Such superior performances are ascribed to fast electrochemical kinetics,outstanding electrode/electrolyte interface stability,and nearly dendrite-free characteristic.Instead,when ZnSO4 or Zn(ClO4)2 is used to replace Zn(CF3SO3)2,the electrochemical performances become much inferior,due to the slow electrochemical kinetics,inhomogeneous Zn stripping/plating process,and the formation of large dendrites and byproducts.This work not only discloses a high-performance cathode material for aqueous zinc-ion batteries but also offers a reference for the choice of electrolyte salt.展开更多
Liquid metal(LM)has become an emerging material paradigm in the electromagnetic interference shielding field owing to its excellent electrical conductivity.However,the processing of lightweight bulk LM composites with...Liquid metal(LM)has become an emerging material paradigm in the electromagnetic interference shielding field owing to its excellent electrical conductivity.However,the processing of lightweight bulk LM composites with finite package without leakage is still a great challenge,due to high surface tension and pump-out issues of LM.Here,a novel confined thermal expansion strategy based on expandable microsphere(EM)is proposed to develop a new class of LM-based monoliths with 3D continuous conductive network.The EM/LM monolith(EM/LMm)presents outstanding performance of lightweight like metallic aerogel(0.104 g cm^(-1)),high strength(3.43 MPa),super elasticity(90%strain),as well as excellent tailor ability and recyclability,rely on its unique gas-filled closed-cellular structure and refined LM network.Moreover,the assembled highly conducting EM/LMm exhibits a recorded shielding effectiveness(98.7 dB)over a broad frequency range of 8.2-40 GHz among reported LM-based composites at an ultra-low content of LM,and demonstrates excellent electromagnetic sealing capacity in practical electronics.The ternary EM/LM/Ni monoliths fabricated by the same approach could be promising universal design principles for multifunctional LM composites,and applicable in magnetic responsive actuator.展开更多
Recently,aqueous zinc-ion batteries with intrinsic safety,low cost,and environmental benignity have attracted tremendous research interest.However,zinc dendrites,harmful side reactions,and zinc metal corrosion stand i...Recently,aqueous zinc-ion batteries with intrinsic safety,low cost,and environmental benignity have attracted tremendous research interest.However,zinc dendrites,harmful side reactions,and zinc metal corrosion stand in the way.Herein,we use lepidocrocite-type sodium titanate hollow microspheres assembled by nanotubes to constitute an artificial solid electrolyte interface layer on the zinc metal electrode.Thanks to the hierarchical structure with abundant open voids,negative-charged layered framework,low hydrophilicity,electrically insulting nature,and large ionic conductivity,the sodium titanate coating layer can effectively homogenize the electric field,promote the Zn^(2+)ion transfer,guide the Zn^(2+)ion flux,reduce the desolvation barrier,improve the exchange current density,and accommodate the plated zinc metal.Consequently,this coating layer can effectively suppress zinc dendrites and other unfavorable effects.With this coating layer,the Zn//Zn symmetric cell is able to provide an impressive cumulative zinc plating capacity of 1375 m Ah cm^(-2) at a current density of 5 m A cm^(-2).This coating layer also contributes to significantly improved electrochemical performances of Zn//MnO_(2) battery and zincion hybrid capacitor.This work offers new insights into the modifications of zinc metal electrodes.展开更多
Solid-state nanopores with controllable pore size and morphology have huge application potential.However,it has been very challenging to process sub-10 nm silicon nanopore arrays with high efficiency and high quality ...Solid-state nanopores with controllable pore size and morphology have huge application potential.However,it has been very challenging to process sub-10 nm silicon nanopore arrays with high efficiency and high quality at low cost.In this study,a method combining metal-assisted chemical etching and machine learning is proposed to fabricate sub-10 nm nanopore arrays on silicon wafers with various dopant types and concentrations.Through a SVM algorithm,the relationship between the nanopore structures and the fabrication conditions,including the etching solution,etching time,dopant type,and concentration,was modeled and experimentally verified.Based on this,a processing parameter window for generating regular nanopore arrays on silicon wafers with variable doping types and concentrations was obtained.The proposed machine-learning-assisted etching method will provide a feasible and economical way to process high-quality silicon nanopores,nanostructures,and devices.展开更多
Effective heat dissipation is a crucial issue in electrochemical energy storage devices. Thus, it is highly desirable to develop high-performance electrode materials with high thermal conductivity. Here, we report a f...Effective heat dissipation is a crucial issue in electrochemical energy storage devices. Thus, it is highly desirable to develop high-performance electrode materials with high thermal conductivity. Here, we report a facile one-step electrodeposition method to synthesize ternary cobalt nickel sulfide(CoNi2S4)flower-like nanosheets which are grown on graphite foil(GF) as binder-free electrode materials for supercapacitors. The as-fabricated GF/CoNi2S4 integrated electrode manifested an excellent thermal conductivity of 620.1 W·m-1·K-1 and a high specific capacitance of 881 F·g-2 at 5 mA cm-2, as well as good rate capability and cycling stability. Ultimately, the all-solid-state symmetric supercapacitor based on these advanced electrodes demonstrated superior heat dissipation performance during the galvanostatic charge-discharge processes. This novel strategy provides a new example of effective thermal management for potential applications in energy storage devices.展开更多
With the increasing popularity of electric/hybrid vehicles and the rapid development of 3C electronics,there is a growing interest in high-rate energy storage systems.The rapid development and widespread adoption of l...With the increasing popularity of electric/hybrid vehicles and the rapid development of 3C electronics,there is a growing interest in high-rate energy storage systems.The rapid development and widespread adoption of lithiumion batteries(LIBs)can be attributed to their numerous advantages,including high energy density,high operating voltage,environmental friendliness,and lack of memory effect.However,the progress of LIBs is currently hindered by the limitations of energy storage materials,which serve as vital components.Therefore,there is an urgent need to address the development of a new generation of high-rate energy storage materials in order to overcome these limitations and further advance LIB technology.Niobium-based oxides have emerged as promising candidates for the fabrication of fast-charging Li-ion batteries due to their excellent rate capability and long lifespan.This review paper provides a comprehensive analysis of the fundamentals,methodologies,and electrochemistries of niobium-based oxides,with a specific focus on the evolution and creation of crystal phases of Nb_(2)O_(5),fundamental electrochemical behavior,and modification methods including morphology modulation,composite technology,and carbon coating.Furthermore,the review explores Nb_(2)O_(5)-derived compounds and related advanced characterization techniques.Finally,the challenges and issues in the development of niobiumbased oxides for high-rate energy storage batteries are discussed,along with future research perspectives.展开更多
Strain sensors with high stretchability, broad strain range, high sensitivity, and good reliability are desirable, owing to their promising applications in electronic skins and human motion monitoring systems. In this...Strain sensors with high stretchability, broad strain range, high sensitivity, and good reliability are desirable, owing to their promising applications in electronic skins and human motion monitoring systems. In this paper, we report a high- performance strain sensor based on printable and stretchable electrically con- ductive elastic composites. This strain sensor is fabricated by mixing silver-coated polystyrene spheres (PS@Ag) and liquid polydimethylsiloxane (PDMS) and screen-printed to a desirable geometry. The strain sensor exhibits fascinating comprehensive performances, including high electrical conductivity (1.65 × 104 S/m), large workable strain range (〉 80%), high sensitivity (gauge factor of 17.5 in strain of 0%-10%, 6.0 in strain of 10%-60% and 78.6 in strain of 60%-80%), inconspicuous resistance overshoot (〈 15%), good reproducibility and excellent long-term stability (1,750 h at 85℃/85% relative humidity) for PS@Ag/PDMS-60, which only contains - 36.7 wt.% of silver. Simultaneously, this strain sensor provides the advantages of low-cost, simple, and large-area scalable fabrication, as well as robust mechanical properties and versatility in applications. Based on these performance characteristics, its applications in flexible printed electrodes and monitoring vigorous human motions are demonstrated, revealing its tremendous potential for applications in flexible and wearable electronics.展开更多
The possibility of printing conductive ink on textiles is progressively researched due to its potential benefits in manufacturing functional wearable electronics and improving wearing comfort.However,few studies have ...The possibility of printing conductive ink on textiles is progressively researched due to its potential benefits in manufacturing functional wearable electronics and improving wearing comfort.However,few studies have reported the effect of conductive ink formulation on electrodes directly screen-printed on flexible substrates,especially printing UV curable conductive ink on common textiles.In this work,a novel UV curable nano-silver ink with short-time curing and low temperature features was developed to manufacture the fully flexible and washable textile-based electrodes by screen printing.The aim of this study was to determine the influence of ink formulation on UV-curing speed,degree of conversion,morphology and electrical properties of printed electrodes.Besides,the application demonstration was highlighted.The curing speed and adhesion of ink was found depending dominantly on the type of prepolymer and the functionality of monomer,and the type of photoinitiator had a decisive effect on the curing speed,degree of double bond conversion and morphology of printed patterns.The nano-silver content is key to guarantee the suitable screen-printability of conductive ink and therefore the uniformity and high conductivity of textile-based electrodes.Optimally,an ink formulation with 60 wt%nano-silver meets the potential application requirements.The electrode with 1.0 mm width showed significantly high electrical conductivity of 2.47×10^(6)S/m,outstanding mechanical durability and satisfactory washability.The high-performance of electrodes screen-printed on different fabrics proved the feasibility and utility of UV curable nano-silver ink.In addition,the application potential of the conductive ink in fabricating electronic textiles(e-textiles)was confirmed by using the textile-based electrodes as the cathodes of silverzinc batteries.We anticipate the developed UV curable conductive ink for screen-printing on textiles can provide a novel design opportunity for flexible and wearable e-textile applications.展开更多
Interfaces of metal-oxide heterostructured electrocatalyst are critical to their catalytic activities due to the significant interfacial effects. However, there are still obscurities in the essence of interfacial effe...Interfaces of metal-oxide heterostructured electrocatalyst are critical to their catalytic activities due to the significant interfacial effects. However, there are still obscurities in the essence of interfacial effects caused by crystalline defects and mismatch of electronic structure at metal-oxide nanojunctions. To deeply understand the interfacial effects, we engineered crystalline-defect Pd-Cu2O interfaces through nonepitaxial growth by a facile redox route. The Pd-Cu2O nanoheterostructures exhibit much higher electrocatalytic activity toward glucose oxidation than their single counterparts and their physical mixture,which makes it have a promising potential for practical application of glucose biosensors.Experimental study and density functional theory(DFT) calculations demonstrated that the interfacial electron accumulation and the shifting up of d bands center of Cu-Pd toward the Fermi level were responsible for excellent electrocatalytic activity. Further study found that Pd(3 1 0) facets exert a strong metaloxide interface interaction with Cu2O(1 1 1) facets due to their lattice mismatch. This leads to the sinking of O atoms and protruding of Cu atoms of Cu2O, and the Pd crystalline defects, further resulting in electron accumulation at the interface and the shifting up of d bands center of Cu-Pd, which is different from previously reported charge transfer between the interfaces. Our findings could contribute to design and development of advanced metal-oxide heterostructured electrocatalysts.展开更多
Weak ion diffusion and electron transport due to limited interlayer spacing and poor electrical conductivity have been identified as critical roadbacks for fast and abundant energy storage of both MoS2-based lithium i...Weak ion diffusion and electron transport due to limited interlayer spacing and poor electrical conductivity have been identified as critical roadbacks for fast and abundant energy storage of both MoS2-based lithium ion batteries (LIBs) and sodium ion batteries (SIBs). In this work, MoS2 porous-hollow nanorods (MoS2/m-C800) have been designed and synthesized via an annealing-followed chemistry-intercalated strategy to solve the two issues. They are uniformly assembled from ultrathin MoS2 nanosheets, deviated to the rod-axis direction, with expanded interlayer spacing due to alternate intercalation of N-doped carbon monolayers between the adjacent MoS2 monolayers. Electrochemical studies of the MoS2/m-C800 sample, as an anode of LIBs, demonstrate that the superstructure can deliver a reversible discharge capacity of 1,170 mAh·g^-1 after 100 cycles at 0.2 A·g^-1 and maintain a reversible capacity of 951 mAh·g^-1 at 1.25 A·g^-1 after 350 cycles. While for SIBs, the superstructure also delivers a reversible discharge capacity of 350 mAh·g^-1 at 0.5 A-g-1 after 500 cycles and exhibits superior rate capacity of 238 mAh·g^-1 at 15 A·g^-1 .The excellent electrochemical performance is closely related with the hierarchical superstructures, including expanded interlayer spacing, alternate intercalation of carbon monolayers and mesoporous feature, which effectively reduce ion diffusion barrier, shorten ion diffusion paths and improve electrical conductivity.展开更多
With the continuous development of wearable electronics,health care and smart terminals,highly performance flexible pressure sensors present a huge application prospect.In this study,by introducing the micro-array str...With the continuous development of wearable electronics,health care and smart terminals,highly performance flexible pressure sensors present a huge application prospect.In this study,by introducing the micro-array structured electrodes and dielectric layers with high dielectric constant,capacitive pressure sensor fabricated with a brand new preparation strategy and highly sensitive is proposed.The prepared micro-array structure is the basis for sensors with high sensitivity.Besides,the contact area between the two electrodes changes from linear to planar with the increased loading,which result in a wider linear responding range.In addition,by introducing ceramic dielectric material-barium titanate(BT)fillers into the dielectric layer to increase it’s the dielectric constant,the sensitivity of the sensor shows two-fold increase.Moreover,the sensitivity gradients can be tuned by changing the loading contents of BT particles.Hence,compared with parallel board capacitive sensors with ordinary dielectric layer,these sensors exhibit excellent performance as follow,high sensitivity(up to 4.9 kPa^(-1))under low pressure range(0-2500 Pa),low detection limit(<1.7 Pa),short response time(<50 ms),a stable response over 5000 loading-unloading cycles,bending stability and an adjustable sensitivity.Further,the flexible pressure sensor can detect the pressure of the water droplets and monitor human movement behavior.With the facile design and excellent comprehensive properties,the flexible pressure sensor provides a new approach to improve the sensitivity and shows a broad application prospects in the wearable electronics,health care and smart terminals.展开更多
As a critical component for the realization of flexible electronics,multifunctional electronic textiles(etextiles)still struggle to achieve controllable printing accuracy,excellent flexibility,decent washability and s...As a critical component for the realization of flexible electronics,multifunctional electronic textiles(etextiles)still struggle to achieve controllable printing accuracy,excellent flexibility,decent washability and simple manufacturing.The printing process of conductive ink plays an important role in manufacturing e-textiles and meanwhile is also the main source of printing defects.In this work,we report the preparation of fully flexible and washable textile-based conductive circuits with screen-printing method based on novel-developed UV-curing conductive ink that contains low temperature and fast cure features.This work systematically investigated the correlation between ink formulation,rheological properties,screen printability on fabric substrates,and the electrical properties of the e-textile made thereafter.The rheological behaviors,including the thixotropic behavior and oscillatory stress sweep of the conductive inks was found depending heavily on the polymer to diluent ratio in the formulation.Subsequently,the rheological response of the inks during screen printing showed determining influence to their printability on textile,that the proper control of ink base viscosity,recovery time and storage/loss modulus is key to ensure the uniformity of printed conductive lines and therefore the electrical conductivity of fabricated e-textiles.A formulation with 24 wt%polymer and 10.8 wt%diluent meets all these stringent requirements.The conductive lines with 1.0 mm width showed exceptionally low resistivity of 2.06×10^(-5)Ωcm Moreover,the conductive lines presented excellent bending tolerance,and there was no significant change in the sample electrical resistance during 10 cycles of washing and drying processes.It is believed that these novel findings and the promising results of the prepared product will provide the basic guideline to the ink formulation design and applications for screen-printing electronics textiles.展开更多
As modern electronics are developed towards miniaturisation,high-degree integration and intelligentisation,a large amount of heat will be generated during the operation of devices.How to efficiently remove needless he...As modern electronics are developed towards miniaturisation,high-degree integration and intelligentisation,a large amount of heat will be generated during the operation of devices.How to efficiently remove needless heat is becoming more and more crucial for the lifetime and performance of electronic devices.Many efforts have been made to improve the thermal conductivity of polymer composites,which is an important component of electronics.Herein,the authors report on preparation of boron nitride micosphere/epoxy composites.The cross-plane thermal conductivity of the resultant composites is up to 1.03 Wm‒1K‒1.This is attributed to the thermally conductive network formed by the peeled hexagonal boron nitride flakes.Thanks to the superior thermal stability of boron nitride micosphere,the boron nitride micosphere/epoxy composite shows a decreased coefficient of thermal expansion(53.47 ppm/K)and an increased glass transition temperature(147.2℃)compared with the pure epoxy resin.In addition,the boron nitride micosphere/epoxy composite exhibits a lower dielectric constant compared with that of the hexagonal boron nitride/epoxy composite.This strategy can potentially pave the way for the design and fabrication of materials with high cross-plane thermal conductivity and lower dielectric properties.展开更多
VS2 with natural layered structure and metallic conductivity is a prospective candidate for sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs).However,due to large radius of Na+and K+,the limited interlayer s...VS2 with natural layered structure and metallic conductivity is a prospective candidate for sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs).However,due to large radius of Na+and K+,the limited interlayer spacing(0.57 nm)of VS2 generally determines high ion diffusion barrier and large volume variation,resulting in unsatisfactory electrochemical performance of SIBs and PIBs.In this work,flower-like VS_(2)/N-doped carbon(VS_(2)/N-C)with expanded(001)plane is grown on reduced graphene oxide(rGO)via a solvothermal and subsequently carbonization strategy.In the VS_(2)/N-C@rGO nanohybrids,the ultrathin VS2"petals"are alternately intercalated by the N-doped porous carbon monolayers to achieve an expanded interlayer spacing(1.02 nm),which can effectively reduce ions diffusion barrier,expose abundant active sites for Na+/K+intercalation,and tolerate large volume variation.The N-C and rGO carbonous materials can significantly promote the electrical conductivity and structural stability.Benefited from the synergistic effect,the VS2/N-C@rGO electrode exhibits large reversible capacity(Na+:407 mAh·g^(-1) at 1 A·g^(-1);K^(+):334 mAh·g^(-1) at 0.2 A·g^(-1)),high rate capacity(Na+:273 mAh·g^(-1) at 8 A·g^(-1);K+:186 mAh·g^(-1) at 5 A·g^(-1)),and remarkable cycling stability(Na+:316 mAh·g^(-1) at 2 A·g^(-1) after 1,400 cycles;K^(+):216 mAh·g^(-1) at 1 A·g^(-1) after 500 cycles).展开更多
Developing metal-free and long lifetime room-temperature phosphorescence(RTP)materials has received tremendous interest due to their numerous potential applications,of which stable triplet-excited state is the core ch...Developing metal-free and long lifetime room-temperature phosphorescence(RTP)materials has received tremendous interest due to their numerous potential applications,of which stable triplet-excited state is the core challenge.Here,boron carbon oxynitride(BCNO)dots,emitting stable blue fluorescence and green RTP,are reported for the first time.The obtained BCNO dots exhibit an unexpected ultralong RTP lifetime of 1.57 s,lasting over 8 s to naked eyes.The effective doping of carbon and oxygen elements in boron nitride(BN)actually provides a small energy gap between singlet and triplet states,facilitating the intersystem crossing(ISC)and populating of triplet excitons.The formation of compact cores via crystallization and effective inter-/intra-dot hydrogen bonds further stabilizes the excited triplet states and reduces quenching of RTP by oxygen at room temperature.Based on the water-soluble feature of BCNO dots,a novel advanced security ink is developed toward anti-counterfeiting tag and confidential information encryption.This study extends BCNO dots to rarely exploited phosphorescence fields and also provides a facile strategy to prepare ultralong lifetime metal-free RTP materials.展开更多
In this study,2-[2-(2-methoxyethoxy)ethoxy]acetic acid(MEEAA)was used to modify the surface of barium titanate nanoparticles(BT NPs)to enhance the compatibility and dispersion of the BT ceramic fillers in polymer matr...In this study,2-[2-(2-methoxyethoxy)ethoxy]acetic acid(MEEAA)was used to modify the surface of barium titanate nanoparticles(BT NPs)to enhance the compatibility and dispersion of the BT ceramic fillers in polymer matrix.A uniform coating layer with a thickness about 2 nm was formed on the surface of BT after modification.The poly(vinylidene fluoride)-hexafluoropropene[P(VDF-HFP)]composites filled with MEEAA-modified BT NPs achieved higher permittivity(∼13 at 3.0 vol%filler)and discharged energy density than that of the untreated BT filled composite.The maximum discharge energy density of 7.8 J/cm^(3)was obtained in the nanocomposites with 3 vol%MEEAA-modified BT NPs at electric field of 425 kV/mm,which is 77%higher than that of 4.4 J/cm^(3)of pure P(VDF-HFP)film at electric field of 420 kV/mm.展开更多
基金financial supports by the National Natural Science Foundation of China (62074154)Shenzhen Science and Technology Program (JCYJ20210324102208023, JSGG20210802153000002)。
文摘Low-dimensional transition metal dichalcogenides(TMDs) have unique electronic structure, vibration modes, and physicochemical properties, making them suitable for fundamental studies and cutting-edge applications such as silicon electronics, optoelectronics, and bioelectronics. However, the brittleness, low toughness,and poor mechanical and electrical stabilities of TMD-based films limit their application. Herein, a TaS_(2) freestanding film with ultralow void ratio of 6.01% is restacked under the effect of bond-free van der Waals(vdW) interactions within the staggered 2H-TaS_(2) nanosheets.The restacked films demonstrated an exceptionally high electrical conductivity of 2,666 S cm^(-1), electromagnetic interference shielding effectiveness(EMI SE) of 41.8 dB, and absolute EMI SE(SSE/t) of 27,859 dB cm^(2) g^(-1), which is the highest value reported for TMD-based materials. The bond-free vdW interactions between the adjacent 2H-TaS_(2) nanosheets provide a natural interfacial strain relaxation, achieving excellent flexibility without rupture after 1,000 bends. In addition, the TaS_(2) nanosheets are further combined with the polymer fibers of bacterial cellulose and aramid nanofibers via electrostatic interactions to significantly enhance the tensile strength and flexibility of the films while maintaining their high electrical conductivity and EMI SE.This work provides promising alternatives for conventional materials used in EMI shielding and nanodevices.
基金supported by the National Natural Science Foundation of China(51902165,12004145,52072323)the Natural Science Foundation of Jiangsu Province(BK20200800)+2 种基金the Natural Science Foundation of Jiangxi Province(20192ACBL20048)the Jiangxi Provincial Natural Science Foundation(20212BAB214032)the Nanjing Science&Technology Innovation Project for Personnel Studying Abroad。
文摘Replacing the conventional carbonate electrolyte by solid-state electrolyte (SSE) will offer improved safety for lithium-ion batteries.To further improve the energy density,Silicon (Si) is attractive for next generation solid-state battery (SSB) because of its high specific capacity and low cost.High energy density and safe Si-based SSB,however,is plagued by large volume change that leads to poor mechanical stability and slow lithium ions transportation at the multiple interfaces between Si and SSE.Herein,we designed a self-integrated and monolithic Si/two dimensional layered T_(3)C_(2)T_(x)(MXene,T_(x) stands for terminal functional groups) electrode architecture with interfacial nitrogen engineering.During a heat treatment process,the polyacrylonitrile not only converts into amorphous carbon (a-C) that shells Si but also forms robust interfacial nitrogen chemical bonds that anchors Si and MXene.During repeated lithiation and delithiation processes,the robust interfacial engineered Si/MXene configuration enhances the mechanical adhesion between Si and MXene that improves the structure stability but also contributes to form stable solid-electrolyte interphase (SEI).In addition,the N-MXene provides fast lithium ions transportation pathways.Consequently,the Si/MXene with interfacial nitrogen engineering (denoted as Si-N-MXene) deliveres high-rate performance with a specific capacity of 1498 m Ah g^(-1) at a high current of 6.4 A g^(-1).A Si-N-MXene/NMC full cell exhibited a capacity retention of 80.5%after 200 cycles.The Si-N-MXene electrode is also applied to SSB and shows a relative stable cycling over 100 cycles,demonstrating the versatility of this concept.
基金the financial support from the National Natural Science Foundation of China (No. 51902165)the Natural Science Foundation of Jiangsu Province (No. BK20170917)+2 种基金the Scientific Research Foundation for High-Level Talents of Nanjing Forestry University (No. GXL2016023)the Program of High-Level Talents in Six Industries of Jiangsu Province (No. XCL-040)the Jiangsu Specially-Appointed Professor Program。
文摘It is urgent to develop high-performance cathode materials for the emerging aqueous zinc-ion batteries with a facile strategy and optimize the related components.Herein,a Ca0.23V2O5·0.95 H2O nanobelt cathode material with a rather large interlayer spacing of 13.0 A is prepared via a one-step hydrothermal approach.The battery with this cathode material and 3 M Zn(CF3SO3)2 electrolyte displays high specific capacity(355.2 mAh g^(-1) at 0.2 A g^(-1)),great rate capability(240.8 mAh g^(-1) at 5 A g^(-1)),and excellent cyclability(97.7% capacity retention over 2000 cycles).Such superior performances are ascribed to fast electrochemical kinetics,outstanding electrode/electrolyte interface stability,and nearly dendrite-free characteristic.Instead,when ZnSO4 or Zn(ClO4)2 is used to replace Zn(CF3SO3)2,the electrochemical performances become much inferior,due to the slow electrochemical kinetics,inhomogeneous Zn stripping/plating process,and the formation of large dendrites and byproducts.This work not only discloses a high-performance cathode material for aqueous zinc-ion batteries but also offers a reference for the choice of electrolyte salt.
基金This work was financially supported by the National Natural Science Foundation of China(62074154)China Postdoctoral Science Foundation(Grant No.2020M682983)+2 种基金Guangdong Basic and Applied Basic Research Fund(2020A1515110962,2020A1515110154)Shenzhen Basic Research Plan(JCYJ20180507182530279)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2017411).
文摘Liquid metal(LM)has become an emerging material paradigm in the electromagnetic interference shielding field owing to its excellent electrical conductivity.However,the processing of lightweight bulk LM composites with finite package without leakage is still a great challenge,due to high surface tension and pump-out issues of LM.Here,a novel confined thermal expansion strategy based on expandable microsphere(EM)is proposed to develop a new class of LM-based monoliths with 3D continuous conductive network.The EM/LM monolith(EM/LMm)presents outstanding performance of lightweight like metallic aerogel(0.104 g cm^(-1)),high strength(3.43 MPa),super elasticity(90%strain),as well as excellent tailor ability and recyclability,rely on its unique gas-filled closed-cellular structure and refined LM network.Moreover,the assembled highly conducting EM/LMm exhibits a recorded shielding effectiveness(98.7 dB)over a broad frequency range of 8.2-40 GHz among reported LM-based composites at an ultra-low content of LM,and demonstrates excellent electromagnetic sealing capacity in practical electronics.The ternary EM/LM/Ni monoliths fabricated by the same approach could be promising universal design principles for multifunctional LM composites,and applicable in magnetic responsive actuator.
基金the financial support from the National Natural Science Foundation of China(51902165)the Program of HighLevel Talents in Six Industries of Jiangsu Province(XCL-040)the Jiangsu Specially-Appointed Professor Program。
文摘Recently,aqueous zinc-ion batteries with intrinsic safety,low cost,and environmental benignity have attracted tremendous research interest.However,zinc dendrites,harmful side reactions,and zinc metal corrosion stand in the way.Herein,we use lepidocrocite-type sodium titanate hollow microspheres assembled by nanotubes to constitute an artificial solid electrolyte interface layer on the zinc metal electrode.Thanks to the hierarchical structure with abundant open voids,negative-charged layered framework,low hydrophilicity,electrically insulting nature,and large ionic conductivity,the sodium titanate coating layer can effectively homogenize the electric field,promote the Zn^(2+)ion transfer,guide the Zn^(2+)ion flux,reduce the desolvation barrier,improve the exchange current density,and accommodate the plated zinc metal.Consequently,this coating layer can effectively suppress zinc dendrites and other unfavorable effects.With this coating layer,the Zn//Zn symmetric cell is able to provide an impressive cumulative zinc plating capacity of 1375 m Ah cm^(-2) at a current density of 5 m A cm^(-2).This coating layer also contributes to significantly improved electrochemical performances of Zn//MnO_(2) battery and zincion hybrid capacitor.This work offers new insights into the modifications of zinc metal electrodes.
基金supported by the National Natural Science Foundation of China[Grant Nos.51975127,U20A6004]the Guangdong-Hong Kong Technology Coopeartion[Grant No.GHP/112/19GD]from Hong Kong Innovation and Technology Commission+1 种基金Research and Development Program of Guangdong Province[Grant No.2020A0505140008]the Fund of Key-Area Research and Development Program of Guangdong Province[Grant No.2018B090906002]。
文摘Solid-state nanopores with controllable pore size and morphology have huge application potential.However,it has been very challenging to process sub-10 nm silicon nanopore arrays with high efficiency and high quality at low cost.In this study,a method combining metal-assisted chemical etching and machine learning is proposed to fabricate sub-10 nm nanopore arrays on silicon wafers with various dopant types and concentrations.Through a SVM algorithm,the relationship between the nanopore structures and the fabrication conditions,including the etching solution,etching time,dopant type,and concentration,was modeled and experimentally verified.Based on this,a processing parameter window for generating regular nanopore arrays on silicon wafers with variable doping types and concentrations was obtained.The proposed machine-learning-assisted etching method will provide a feasible and economical way to process high-quality silicon nanopores,nanostructures,and devices.
基金financially supported by the National Natural Science Foundation of China (21203236)Shenzhen Peacock Plan (KQCX2015033117354154)+1 种基金Shenzhen basic research plan (JCYJ2015052114432090)the Science & Technology Project of Educational Commission of Jiangxi Province, China (GJJ161198)
文摘Effective heat dissipation is a crucial issue in electrochemical energy storage devices. Thus, it is highly desirable to develop high-performance electrode materials with high thermal conductivity. Here, we report a facile one-step electrodeposition method to synthesize ternary cobalt nickel sulfide(CoNi2S4)flower-like nanosheets which are grown on graphite foil(GF) as binder-free electrode materials for supercapacitors. The as-fabricated GF/CoNi2S4 integrated electrode manifested an excellent thermal conductivity of 620.1 W·m-1·K-1 and a high specific capacitance of 881 F·g-2 at 5 mA cm-2, as well as good rate capability and cycling stability. Ultimately, the all-solid-state symmetric supercapacitor based on these advanced electrodes demonstrated superior heat dissipation performance during the galvanostatic charge-discharge processes. This novel strategy provides a new example of effective thermal management for potential applications in energy storage devices.
基金This work was financially supported by“Hundred Young Talents Program”(No.263113491)from Guangdong University of Technology.
文摘With the increasing popularity of electric/hybrid vehicles and the rapid development of 3C electronics,there is a growing interest in high-rate energy storage systems.The rapid development and widespread adoption of lithiumion batteries(LIBs)can be attributed to their numerous advantages,including high energy density,high operating voltage,environmental friendliness,and lack of memory effect.However,the progress of LIBs is currently hindered by the limitations of energy storage materials,which serve as vital components.Therefore,there is an urgent need to address the development of a new generation of high-rate energy storage materials in order to overcome these limitations and further advance LIB technology.Niobium-based oxides have emerged as promising candidates for the fabrication of fast-charging Li-ion batteries due to their excellent rate capability and long lifespan.This review paper provides a comprehensive analysis of the fundamentals,methodologies,and electrochemistries of niobium-based oxides,with a specific focus on the evolution and creation of crystal phases of Nb_(2)O_(5),fundamental electrochemical behavior,and modification methods including morphology modulation,composite technology,and carbon coating.Furthermore,the review explores Nb_(2)O_(5)-derived compounds and related advanced characterization techniques.Finally,the challenges and issues in the development of niobiumbased oxides for high-rate energy storage batteries are discussed,along with future research perspectives.
基金This work was supported by the National Key R&D Project from Minister of Science and Technology of China (No. 2016YFA0202702), National Natural Science Foundation of China (Nos. 61701488 and 21571186), Leading Scientific Research Project of Chinese Academy of Sciences (No. QYZDY-SSW-JSC010), Youth Innovation Promotion Association (No. 2017411), Guangdong Provincial Key Laboratory (No. 2014B030301014), Guangdong TeZhi Plan Youth Talent of Science and Technology (No. 2014TQ01C102), Shenzhen Basic Research plan (Nos. JSGG20150512145714246 and JSGG20160229155249762) and SIAT Innovation Program for Excellent Young Researchers (No. 2016005).
文摘Strain sensors with high stretchability, broad strain range, high sensitivity, and good reliability are desirable, owing to their promising applications in electronic skins and human motion monitoring systems. In this paper, we report a high- performance strain sensor based on printable and stretchable electrically con- ductive elastic composites. This strain sensor is fabricated by mixing silver-coated polystyrene spheres (PS@Ag) and liquid polydimethylsiloxane (PDMS) and screen-printed to a desirable geometry. The strain sensor exhibits fascinating comprehensive performances, including high electrical conductivity (1.65 × 104 S/m), large workable strain range (〉 80%), high sensitivity (gauge factor of 17.5 in strain of 0%-10%, 6.0 in strain of 10%-60% and 78.6 in strain of 60%-80%), inconspicuous resistance overshoot (〈 15%), good reproducibility and excellent long-term stability (1,750 h at 85℃/85% relative humidity) for PS@Ag/PDMS-60, which only contains - 36.7 wt.% of silver. Simultaneously, this strain sensor provides the advantages of low-cost, simple, and large-area scalable fabrication, as well as robust mechanical properties and versatility in applications. Based on these performance characteristics, its applications in flexible printed electrodes and monitoring vigorous human motions are demonstrated, revealing its tremendous potential for applications in flexible and wearable electronics.
基金supported by the Fundamental Research Funds for the Central Universities(2232019G-01 and CUSFDH-D-2018026)the Shanghai Natural Science Foundation(20ZR1400500)。
文摘The possibility of printing conductive ink on textiles is progressively researched due to its potential benefits in manufacturing functional wearable electronics and improving wearing comfort.However,few studies have reported the effect of conductive ink formulation on electrodes directly screen-printed on flexible substrates,especially printing UV curable conductive ink on common textiles.In this work,a novel UV curable nano-silver ink with short-time curing and low temperature features was developed to manufacture the fully flexible and washable textile-based electrodes by screen printing.The aim of this study was to determine the influence of ink formulation on UV-curing speed,degree of conversion,morphology and electrical properties of printed electrodes.Besides,the application demonstration was highlighted.The curing speed and adhesion of ink was found depending dominantly on the type of prepolymer and the functionality of monomer,and the type of photoinitiator had a decisive effect on the curing speed,degree of double bond conversion and morphology of printed patterns.The nano-silver content is key to guarantee the suitable screen-printability of conductive ink and therefore the uniformity and high conductivity of textile-based electrodes.Optimally,an ink formulation with 60 wt%nano-silver meets the potential application requirements.The electrode with 1.0 mm width showed significantly high electrical conductivity of 2.47×10^(6)S/m,outstanding mechanical durability and satisfactory washability.The high-performance of electrodes screen-printed on different fabrics proved the feasibility and utility of UV curable nano-silver ink.In addition,the application potential of the conductive ink in fabricating electronic textiles(e-textiles)was confirmed by using the textile-based electrodes as the cathodes of silverzinc batteries.We anticipate the developed UV curable conductive ink for screen-printing on textiles can provide a novel design opportunity for flexible and wearable e-textile applications.
基金supported by the National Natural Science Foundation of China(21203236)Guangdong Department of Science and Technology(2017A050501052)Shenzhen Research Plan(JCYJ20160229195455154)
文摘Interfaces of metal-oxide heterostructured electrocatalyst are critical to their catalytic activities due to the significant interfacial effects. However, there are still obscurities in the essence of interfacial effects caused by crystalline defects and mismatch of electronic structure at metal-oxide nanojunctions. To deeply understand the interfacial effects, we engineered crystalline-defect Pd-Cu2O interfaces through nonepitaxial growth by a facile redox route. The Pd-Cu2O nanoheterostructures exhibit much higher electrocatalytic activity toward glucose oxidation than their single counterparts and their physical mixture,which makes it have a promising potential for practical application of glucose biosensors.Experimental study and density functional theory(DFT) calculations demonstrated that the interfacial electron accumulation and the shifting up of d bands center of Cu-Pd toward the Fermi level were responsible for excellent electrocatalytic activity. Further study found that Pd(3 1 0) facets exert a strong metaloxide interface interaction with Cu2O(1 1 1) facets due to their lattice mismatch. This leads to the sinking of O atoms and protruding of Cu atoms of Cu2O, and the Pd crystalline defects, further resulting in electron accumulation at the interface and the shifting up of d bands center of Cu-Pd, which is different from previously reported charge transfer between the interfaces. Our findings could contribute to design and development of advanced metal-oxide heterostructured electrocatalysts.
基金supported by the National Natural Science Foundation of China (No.51872172)Natural Science Foundation of Shandong Province (Nos.ZR2018MEM010 and ZR2019MEM021)+1 种基金Major Research and Development Program for Public Welfare in Shandong (No.2018GGX102021)Young Scholars Program of Shandong University.
文摘Weak ion diffusion and electron transport due to limited interlayer spacing and poor electrical conductivity have been identified as critical roadbacks for fast and abundant energy storage of both MoS2-based lithium ion batteries (LIBs) and sodium ion batteries (SIBs). In this work, MoS2 porous-hollow nanorods (MoS2/m-C800) have been designed and synthesized via an annealing-followed chemistry-intercalated strategy to solve the two issues. They are uniformly assembled from ultrathin MoS2 nanosheets, deviated to the rod-axis direction, with expanded interlayer spacing due to alternate intercalation of N-doped carbon monolayers between the adjacent MoS2 monolayers. Electrochemical studies of the MoS2/m-C800 sample, as an anode of LIBs, demonstrate that the superstructure can deliver a reversible discharge capacity of 1,170 mAh·g^-1 after 100 cycles at 0.2 A·g^-1 and maintain a reversible capacity of 951 mAh·g^-1 at 1.25 A·g^-1 after 350 cycles. While for SIBs, the superstructure also delivers a reversible discharge capacity of 350 mAh·g^-1 at 0.5 A-g-1 after 500 cycles and exhibits superior rate capacity of 238 mAh·g^-1 at 15 A·g^-1 .The excellent electrochemical performance is closely related with the hierarchical superstructures, including expanded interlayer spacing, alternate intercalation of carbon monolayers and mesoporous feature, which effectively reduce ion diffusion barrier, shorten ion diffusion paths and improve electrical conductivity.
基金financially supported by National Natural Science Foundation of China(21571186)National key R&D project from minister of science and technology of China(2016YFA0202702)+1 种基金Shenzhen Basic Research Plan(JCYJ20170818162548196)Youth Innovation Promotion Association of the Chinese Academy of Sciences(2017411).
文摘With the continuous development of wearable electronics,health care and smart terminals,highly performance flexible pressure sensors present a huge application prospect.In this study,by introducing the micro-array structured electrodes and dielectric layers with high dielectric constant,capacitive pressure sensor fabricated with a brand new preparation strategy and highly sensitive is proposed.The prepared micro-array structure is the basis for sensors with high sensitivity.Besides,the contact area between the two electrodes changes from linear to planar with the increased loading,which result in a wider linear responding range.In addition,by introducing ceramic dielectric material-barium titanate(BT)fillers into the dielectric layer to increase it’s the dielectric constant,the sensitivity of the sensor shows two-fold increase.Moreover,the sensitivity gradients can be tuned by changing the loading contents of BT particles.Hence,compared with parallel board capacitive sensors with ordinary dielectric layer,these sensors exhibit excellent performance as follow,high sensitivity(up to 4.9 kPa^(-1))under low pressure range(0-2500 Pa),low detection limit(<1.7 Pa),short response time(<50 ms),a stable response over 5000 loading-unloading cycles,bending stability and an adjustable sensitivity.Further,the flexible pressure sensor can detect the pressure of the water droplets and monitor human movement behavior.With the facile design and excellent comprehensive properties,the flexible pressure sensor provides a new approach to improve the sensitivity and shows a broad application prospects in the wearable electronics,health care and smart terminals.
基金supported by the Fundamental Research Funds for the Central Universities under Grant number CUSF-DHD-2018026 and 2232019G-02。
文摘As a critical component for the realization of flexible electronics,multifunctional electronic textiles(etextiles)still struggle to achieve controllable printing accuracy,excellent flexibility,decent washability and simple manufacturing.The printing process of conductive ink plays an important role in manufacturing e-textiles and meanwhile is also the main source of printing defects.In this work,we report the preparation of fully flexible and washable textile-based conductive circuits with screen-printing method based on novel-developed UV-curing conductive ink that contains low temperature and fast cure features.This work systematically investigated the correlation between ink formulation,rheological properties,screen printability on fabric substrates,and the electrical properties of the e-textile made thereafter.The rheological behaviors,including the thixotropic behavior and oscillatory stress sweep of the conductive inks was found depending heavily on the polymer to diluent ratio in the formulation.Subsequently,the rheological response of the inks during screen printing showed determining influence to their printability on textile,that the proper control of ink base viscosity,recovery time and storage/loss modulus is key to ensure the uniformity of printed conductive lines and therefore the electrical conductivity of fabricated e-textiles.A formulation with 24 wt%polymer and 10.8 wt%diluent meets all these stringent requirements.The conductive lines with 1.0 mm width showed exceptionally low resistivity of 2.06×10^(-5)Ωcm Moreover,the conductive lines presented excellent bending tolerance,and there was no significant change in the sample electrical resistance during 10 cycles of washing and drying processes.It is believed that these novel findings and the promising results of the prepared product will provide the basic guideline to the ink formulation design and applications for screen-printing electronics textiles.
基金The authors acknowledge the financial support from National Natural Science Foundation of China(no.51603226)the National Key R&D Project from Minister of Science and Technology of China(2016YFA0202702)Shenzhen Fundamental Research Program(JCYJ20150831154213681).
文摘As modern electronics are developed towards miniaturisation,high-degree integration and intelligentisation,a large amount of heat will be generated during the operation of devices.How to efficiently remove needless heat is becoming more and more crucial for the lifetime and performance of electronic devices.Many efforts have been made to improve the thermal conductivity of polymer composites,which is an important component of electronics.Herein,the authors report on preparation of boron nitride micosphere/epoxy composites.The cross-plane thermal conductivity of the resultant composites is up to 1.03 Wm‒1K‒1.This is attributed to the thermally conductive network formed by the peeled hexagonal boron nitride flakes.Thanks to the superior thermal stability of boron nitride micosphere,the boron nitride micosphere/epoxy composite shows a decreased coefficient of thermal expansion(53.47 ppm/K)and an increased glass transition temperature(147.2℃)compared with the pure epoxy resin.In addition,the boron nitride micosphere/epoxy composite exhibits a lower dielectric constant compared with that of the hexagonal boron nitride/epoxy composite.This strategy can potentially pave the way for the design and fabrication of materials with high cross-plane thermal conductivity and lower dielectric properties.
基金The authors are grateful to the National Key Research and Development Project(No.51890863)the National Natural Science Foundation of China(NSFC,Nos.51872172 and 51972197)+2 种基金the Natural Science Foundation of Shandong Province(Nos.ZR2018MEM010 and ZR2019MEM021)Major Research and Development Program for Public Welfare in Shandong(No.2018GGX102021)Young Scholars Program of Shandong University.
文摘VS2 with natural layered structure and metallic conductivity is a prospective candidate for sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs).However,due to large radius of Na+and K+,the limited interlayer spacing(0.57 nm)of VS2 generally determines high ion diffusion barrier and large volume variation,resulting in unsatisfactory electrochemical performance of SIBs and PIBs.In this work,flower-like VS_(2)/N-doped carbon(VS_(2)/N-C)with expanded(001)plane is grown on reduced graphene oxide(rGO)via a solvothermal and subsequently carbonization strategy.In the VS_(2)/N-C@rGO nanohybrids,the ultrathin VS2"petals"are alternately intercalated by the N-doped porous carbon monolayers to achieve an expanded interlayer spacing(1.02 nm),which can effectively reduce ions diffusion barrier,expose abundant active sites for Na+/K+intercalation,and tolerate large volume variation.The N-C and rGO carbonous materials can significantly promote the electrical conductivity and structural stability.Benefited from the synergistic effect,the VS2/N-C@rGO electrode exhibits large reversible capacity(Na+:407 mAh·g^(-1) at 1 A·g^(-1);K^(+):334 mAh·g^(-1) at 0.2 A·g^(-1)),high rate capacity(Na+:273 mAh·g^(-1) at 8 A·g^(-1);K+:186 mAh·g^(-1) at 5 A·g^(-1)),and remarkable cycling stability(Na+:316 mAh·g^(-1) at 2 A·g^(-1) after 1,400 cycles;K^(+):216 mAh·g^(-1) at 1 A·g^(-1) after 500 cycles).
基金The authors are grateful to the National Natural Science Foundation of China(NSFC)(Nos.51872172 and 51972197)Natural Science Foundation of Shandong Province(Nos.ZR2018MEM010 and ZR2019MEM021)+1 种基金Major Research and Development Program for Public Welfare in Shandong(No.2018GGX102021)Young Scholars Program of Shandong University.
文摘Developing metal-free and long lifetime room-temperature phosphorescence(RTP)materials has received tremendous interest due to their numerous potential applications,of which stable triplet-excited state is the core challenge.Here,boron carbon oxynitride(BCNO)dots,emitting stable blue fluorescence and green RTP,are reported for the first time.The obtained BCNO dots exhibit an unexpected ultralong RTP lifetime of 1.57 s,lasting over 8 s to naked eyes.The effective doping of carbon and oxygen elements in boron nitride(BN)actually provides a small energy gap between singlet and triplet states,facilitating the intersystem crossing(ISC)and populating of triplet excitons.The formation of compact cores via crystallization and effective inter-/intra-dot hydrogen bonds further stabilizes the excited triplet states and reduces quenching of RTP by oxygen at room temperature.Based on the water-soluble feature of BCNO dots,a novel advanced security ink is developed toward anti-counterfeiting tag and confidential information encryption.This study extends BCNO dots to rarely exploited phosphorescence fields and also provides a facile strategy to prepare ultralong lifetime metal-free RTP materials.
基金supported by the National Natural Science Foundation of China(no.51377157)the Guangdong Innovative Research Team Program(no.2011D052)+1 种基金the Guangdong Provincial Key Laboratory(2014B030301014)the Shenzhen Key Fundamental Program(JCYJ20160608160307181).
文摘In this study,2-[2-(2-methoxyethoxy)ethoxy]acetic acid(MEEAA)was used to modify the surface of barium titanate nanoparticles(BT NPs)to enhance the compatibility and dispersion of the BT ceramic fillers in polymer matrix.A uniform coating layer with a thickness about 2 nm was formed on the surface of BT after modification.The poly(vinylidene fluoride)-hexafluoropropene[P(VDF-HFP)]composites filled with MEEAA-modified BT NPs achieved higher permittivity(∼13 at 3.0 vol%filler)and discharged energy density than that of the untreated BT filled composite.The maximum discharge energy density of 7.8 J/cm^(3)was obtained in the nanocomposites with 3 vol%MEEAA-modified BT NPs at electric field of 425 kV/mm,which is 77%higher than that of 4.4 J/cm^(3)of pure P(VDF-HFP)film at electric field of 420 kV/mm.