As a new scientific discipline, nanoparticle aerosol science and technology (NAST) deals with the formation, properties and behavior of nanoparticles in gases. Driven by its practical applications in many different ...As a new scientific discipline, nanoparticle aerosol science and technology (NAST) deals with the formation, properties and behavior of nanoparticles in gases. Driven by its practical applications in many different fields, NAST has been undergoing rapid development. A conceptual framework of the discipline, with its own basic principles, experimental methods and computational techniques, is now taking shape. This paper presents an overview of the current status and research needs of the new discipline. The presentation begins with a discourse on the relationship among various particle systems, which occur frequently in nature and industry. The properties and behavior of nanoparticle aerosols are then discussed, with emphasis on the key roles played by particle size and morphology. Similar to fluid dynamics, NAST is an enabling discipline in the sense that it has provided the concepts and methodology needed for the development of many other fields. Applications of nanoparticle aerosol science and technology are highlighted in three important areas: (1) aerosol processes for synthesis of nanoparticles, (2) atmospheric nanoparticles and global climate, and (3) dosimetry of inhaled nanoparticles. These fields have features in common insofar as nanoparticie aerosols follow the same basic laws of physics and chemistry.展开更多
文摘As a new scientific discipline, nanoparticle aerosol science and technology (NAST) deals with the formation, properties and behavior of nanoparticles in gases. Driven by its practical applications in many different fields, NAST has been undergoing rapid development. A conceptual framework of the discipline, with its own basic principles, experimental methods and computational techniques, is now taking shape. This paper presents an overview of the current status and research needs of the new discipline. The presentation begins with a discourse on the relationship among various particle systems, which occur frequently in nature and industry. The properties and behavior of nanoparticle aerosols are then discussed, with emphasis on the key roles played by particle size and morphology. Similar to fluid dynamics, NAST is an enabling discipline in the sense that it has provided the concepts and methodology needed for the development of many other fields. Applications of nanoparticle aerosol science and technology are highlighted in three important areas: (1) aerosol processes for synthesis of nanoparticles, (2) atmospheric nanoparticles and global climate, and (3) dosimetry of inhaled nanoparticles. These fields have features in common insofar as nanoparticie aerosols follow the same basic laws of physics and chemistry.