期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Detrital-zircon geochronology of the Jurassic coal-bearing strata in the western Ordos Basin, North China: Evidences for multi-cycle sedimentation 被引量:8
1
作者 Pei Guo chiyang liu +3 位作者 Jianqiang Wang Yu Deng Guangzhou Mao Wenqing Wang 《Geoscience Frontiers》 SCIE CAS CSCD 2018年第6期1725-1743,共19页
The western Ordos Basin(WOB), situated in a tectonic transition zone in the North China Craton, acts as an excellent example for studying the Mesozoic intraplate sedimentation and deformation in Asia. In this study, U... The western Ordos Basin(WOB), situated in a tectonic transition zone in the North China Craton, acts as an excellent example for studying the Mesozoic intraplate sedimentation and deformation in Asia. In this study, U-Pb ages for 1203 detrital zircons of 14 sandstone samples collected from 11 sections are presented to unravel the sediment source locations and paleogeographic environments of the Early-Middle Jurassic coal-bearing Yan'an Formation in the WOB. Data show that there are five prominent age groups in the detrital zircons of the Yan'an Formation, peaking at ca. 282 Ma, 426 Ma, 924 Ma, 1847 Ma, and2468 Ma. Samples from the northern, middle, and southern parts of the WOB contain these five age categories in various proportions. In the northern region, the Yan'an Formation exclusively contains Early Permian detrital zircons with a single age group peaking at 282 Ma, matching well with the crystallizing ages of the widespread Early Permian granites in the Yinshan Belt to the north and the Alxa Block to the northwest. While in the southern region, the Yan'an Formation mainly contains three groups of detrital zircons, with age peaks at 213 Ma, 426 Ma, and 924 Ma. These zircon ages resemble those of the igneous rocks in the Qilian-Qinling Orogenic Belt to the south-southwest. Samples in the middle region, characterized by a mixture age spectrum with peaks at 282 Ma, 426 Ma, 924 Ma, 1847 Ma and 2468 Ma, are previously thought to have mixed derivations from surrounding ranges. However, by referring to the detrital-zircon age compositions of the pre-Jurassic sedimentary successions and combining with paleontological and petrographic analysis, we firstly propose that the sediments of the Yan'an Formation in the middle region were partly recycled from the Triassic and Paleozoic sedimentary strata in the WOB.The occurrence of recycled sedimentation suggests that the Late Triassic-Early Jurassic intraplate compressional deformation was very intense in the WOB, especially for regions in front of the Qilian Orogenic Belt. 展开更多
关键词 Western ORDOS Basin Yan’an Formation U-PB GEOCHRONOLOGY Recycled zircon INTRAPLATE deformation
下载PDF
Geochemistry,geochronology and Hf isotope of granitoids in the northern Alxa region:Implications for the Late Paleozoic tectonic evolution of the Central Asian Orogenic Belt 被引量:3
2
作者 Xiaochen Zhao chiyang liu +2 位作者 Jianqiang Wang Shaohua Zhang Yuzhao Guan 《Geoscience Frontiers》 SCIE CAS CSCD 2020年第5期1711-1725,共15页
The tectonic setting of the northern Alxa region during the Late Paleozoic is highly controversial.The key to resolve this controversy is to recognize the Late Paleozoic magmatic processes in the northern Alxa.In this... The tectonic setting of the northern Alxa region during the Late Paleozoic is highly controversial.The key to resolve this controversy is to recognize the Late Paleozoic magmatic processes in the northern Alxa.In this paper,we present new zircon U-Pb ages,Hf-isotopic compositions and whole-rock geochemical data of four granitoids along the Zhusileng-Hangwula Tectonic Belt in the northern Alxa region that could provide critical information about the tectonic evolution of this region.The zircon U-Pb data could be grouped as two phases:Late Devonian granite and diorite(ca.373-360 Ma),and Late Carboniferous granodiorite(ca.318 Ma).The Late Devonian granites and diorites are metaluminous to slightly peraluminous,with A/CNK and A/NK ratios of 0.90-1.11 and0.95-2.19,respectively.The Late Devonian diorites are characterized by high MgO,Cr and Ni contents and MgO#values,together with variableεHf(t)values from-1.0 to+1.3 and old TDM2 ages varied from 1283 Ma to 1426 Ma,indicating the primary magma was potentially derived from magma mixing of depleted mantle with Mesoproterozoic continental crust.Even though the Late Devonian granites yielded most positive and minor negative eHf(t)values between-1.1 to+5.7(three grains are negative)with two-stage model ages(TDM2)of 1003-1438 Ma,they display low MgO,Cr and Ni contents and MgO#values,suggesting that they were mainly derived from juvenile crustal materials,mixed with a small amount of ancient crust.The Late Carboniferous granitoids are metaluminous and medium-K calc-alkaline series,with A/CNK and A/NK ratios ranging from 0.88 to 0.95 and1.75 to 1.90,respectively.These rocks were potentially derived from juvenile crustal materials mixed with depleted mantle,as evidenced by their highεHf(t)values(+11.6 to+14.1)and young TDM2 ages(427 Ma to 586 Ma),as well as high Mg#values,and MgO,Ni and Cr contents.Our data,along with available sedimentary evidence and previous researches,indicate that the Late Devonian and Late Carboniferous rocks are arc-related granitoids under the subduction setting.The identification of arc-related granitoids in the northern Alxa region not only reveals the Late Paleozoic magmatic process in response to the subduction of Paleo Asian Ocean,but also provide significant constrains to the tectonic evolution of the Central Asian Orogenic Belt. 展开更多
关键词 GEOCHEMISTRY U–Pb geochronology Hf isotopic composition GRANITOIDS Northern Alxa region Central Asian Orogenic Belt
下载PDF
Provenance Analyses of Lower Cretaceous Strata in the Liupanshan Basin: From Paleocurrents Indicators, Conglomerate Clast Compositions, and Zircon U-Pb Geochronology 被引量:5
3
作者 Xiaochen Zhao chiyang liu +3 位作者 Jianqiang Wang Wei Luo Fangpeng Du Li Ma 《Journal of Earth Science》 SCIE CAS CSCD 2020年第4期757-771,共15页
The Liupanshan Basin constitutes a major portion of the northern North-South tectonic belt. The Lower Cretaceous strata in the Liupanshan Basin recorded the tectono-sedimentary evolution processes of this area and are... The Liupanshan Basin constitutes a major portion of the northern North-South tectonic belt. The Lower Cretaceous strata in the Liupanshan Basin recorded the tectono-sedimentary evolution processes of this area and are pivotal for understanding the original sedimentary appearance of the Liupanshan Basin. In this work, we present a study of provenance and tectono-sedimentary evolution of the Liupanshan Basin during the Early Cretaceous. Integrated-paleocurrent directions, gravel clast compositions, and detrital zircon U-Pb isotopic analysis of the Lower Cretaceous Sanqiao and Heshangpu formations were applied to determine the provenance. The gravel clast compositions of Sanqiao Formation conglomerates(mainly including magmatic rocks, metamorphic rocks and limestones) display various features in different places, revealing different rock components of source areas. The paleocurrent directions of the Sanqiao and Heshangpu formations suggest that the sediments were transported from the basin margin to the center. Detrital zircons of two samples from the Huoshizhai Section(northwestern Liupanshan Basin) yield a dominant unimodal distribution from 420 to 500 Ma, suggesting a single-sourced provenance. Based on the above analyses, comparing to the magmatic records in the Qilian-Qinling orogenic belt, the detritus of the Sanqiao and Heshangpu formations were mainly from the proximal metamorphic and magmatic rocks of the Qilian-Qinling orogenic belt and the limestones of the archaic uplift. Combined with sedimentary characteristics, we concluded that the Liupanshan Basin experienced multi-stage evolution history:(1) the early rifting extension stage(Sanqiao Period),(2) the middle spanning and depression stage(Heshangpu–Early Naijiahe Period), and(3) the late extinction stage(Late Naijiahe Period). The evolution of Liupanshan Basin is closely related to that of Ordos Basin and it is further associated with tectonic transition of the northern North-South tectonic belt. 展开更多
关键词 provenance analyses tectono-sedimentary evolution Liupanshan Basin Lower Cretaceous North-South tectonic belt
原文传递
Mesozoic Tectonothermal Evolution of the Southern Central Asian Orogenic Belt: Evidence from Apatite Fission-Track Thermochronology in Shalazha Mountain, Inner Mongolia 被引量:5
4
作者 Heng Peng Jianqiang Wang +5 位作者 chiyang liu Shaohua Zhang Yazhuo Niu Tianbing Zhang Bo Song Wei Han 《Journal of Earth Science》 SCIE CAS CSCD 2023年第1期37-53,共17页
Mesozoic intracontinental orogeny and deformation were widespread within the southern Central Asian Orogenic Belt(CAOB). Chronological constraints remain unclear when assessing the Mesozoic evolution of the central se... Mesozoic intracontinental orogeny and deformation were widespread within the southern Central Asian Orogenic Belt(CAOB). Chronological constraints remain unclear when assessing the Mesozoic evolution of the central segment of this region. The tectonic belt of Shalazha Mountain located in the center of this region is an ideal place to decode the deformation process. Apatite fission-track(AFT) thermochronology in Shalazha Mountain is applied to constrain the Mesozoic tectonothermal evolution of the central segment of southern CAOB. The bedrock AFT ages range from 161.8 ± 6.9 to 137.0 ± 7.3 Ma, and the first reported detrital AFT obtained from Lower Cretaceous strata shows three age peaks: P1(ca. 178 Ma), P2(ca. 149 Ma) and P3(ca. 105.6 Ma). Bedrock thermal history modeling indicates that Shalazha Mountain have experienced three stages of differential cooling: Late Triassic–Early Jurassic(~230–174 Ma), Late Jurassic–Earliest Cretaceous(~174–135 Ma) and later(~135 Ma). The first two cooling stages are well preserved by the detrital AFT thermochronological result(P1, P2) from the adjacent Lower Cretaceous strata, while P3(ca. 105.6 Ma) records coeval volcanic activity. Furthermore, our data uncover that hanging wall samples cooled faster between the Late Triassic and the Early Cretaceous than those from the footwall of Shalazha thrust fault, which synchronizes with the cooling of the Shalazha Mountain and implies significant two-stage thrust fault activation between ca. 230 and 135 Ma. These new low-temperature thermochronological results from the Shalazha Mountain region and nearby reveal three main phases of differential tectonothermal events representing the Mesozoic reactivation of the central segment of the southern CAOB. In our interpretations, the initial rapid uplift in the Late Triassic was possibly associated with intracontinental orogenesis of the CAOB. Subsequent Middle Jurassic–Earliest Cretaceous cooling is highly consistent with the Mesozoic intense intraplate compression that occurred in the southern CAOB, and is interpreted as a record of closure of the Mongol-Okhotsk Ocean. Then widespread Cretaceous denudation and burial in the adjacent fault basin could be linked with the oblique subduction of the Izanagi Plate along the eastern Eurasian Plate, creating a northeast-trending normal fault and synchronous extension. However, our AFT thermochronometry detects no intense Cenozoic reactivation information of Shalazha Mountain region. 展开更多
关键词 intracontinental deformation Shalazha Mountain southern Central Asian Orogenic Belt APATITE apatite fission-track thermal history modeling EXHUMATION
原文传递
Genetic causes of oil-rich and oil-poor reservoirs: Implications from two Cenozoic basins in the eastern North China Craton 被引量:2
5
作者 chiyang liu Lei HUANG +4 位作者 Dongdong ZHANG Junfeng ZHAO Yu DENG Pei GUO Yijian HUANG &Jianqiang WANG 《Science China Earth Sciences》 SCIE EI CAS CSCD 2018年第12期1910-1931,共22页
The Bohai Bay and Hehuai(southern North China) rift basins in the eastern part of the North China Craton are southnorth-adjacent. They have shown synchronous evolutionary processes, and possess generally identical sup... The Bohai Bay and Hehuai(southern North China) rift basins in the eastern part of the North China Craton are southnorth-adjacent. They have shown synchronous evolutionary processes, and possess generally identical superficial and shallow structural characteristics as well as similar basin areas. However, there is a large difference in the richness of oil resources between the two basins. The Bohai Bay Basin has extremely abundant oil reserves, while commercial oil reserves have not been found in the Hehuai Basin. The deep tectonic structures, magmatic activities, and modern and paleo-geothermal fields of the two basins are significantly different. Compared with the Hehuai Basin, the Bohai Bay Basin has a thinner crust and more complex structure with multiple low-velocity layers. It is also characterized by intense magmatic activity, high modern and paleogeothermal fields, frequent seismic activity, and active deep interactions, small effective elastic thickness of the isotropic lithosphere, and shorter balanced transformation wavelength of the lithosphere with a high likelihood of local compensation. The Hehuai Basin has a simple deep structure and homogeneous crustal composition, with a high likelihood of regional compensation. The characteristics of the deep structures mentioned above are generally similar to those of the southern part of the stable Ordos Basin, except for the smaller crust thickness. This indicates the presence of differences in Mesozoic destruction between the southern and northern zones in the eastern part of the North China Craton. The northern zone was subjected to significant destruction, while the southern zone was subjected to modifications, primarily in the form of local changes in the structures and/or properties of the crust or lithospheric mantle, with the overall structure and stability of the craton kept intact. The formation of high-quality source rock is primarily influenced by the abnormal flourishment of organisms in water bodies during the syndepositional period, and is also strongly associated with the high geothermal setting of basins and nutrients from hydrothermal solutions and volcanoes. In other words, it is mainly controlled by deep processes and deep-major fault activity. The differences in the deep structures and modern and paleo geothermal fields of the two basins correspond to the difference in richness of oil resources, suggesting that there is an important internal or causal relationship between the two aspects. This viewpoint coincides with the conditions and environments required for the development of high-quality source rock in hydrocarbon-rich basins(sags)in China and other countries, and is evidenced by the modern lake basin of the East African Rift. A new hydrocarbon generation model is proposed in this work: petroleum is a comprehensive product of the integration of bioenergy, thermal energy, and other related energies(such as chemical and kinetic energy) and their interactions; the degree of richness of petroleum is generally controlled by the regional tectonic structure, thermal environment, and deep processes; nonmarine basins or depressions with abundant resources are closely related to active deep processes, intense exchange of material between the deep and shallow layers, participation of external hydrocarbons, and energy integration and conversion. 展开更多
关键词 GENETIC CAUSES of oil-rich and oil-poor RESERVOIRS Bohai Bay Basin Hehuai Basin Destruction of North China Craton Deep processes High-quality source rock formation
原文传递
Cenozoic Fault Distribution Characteristics and Evolution in Qikou Sag of Bohai Basin, China 被引量:1
6
作者 Dongdong Zhang chiyang liu +3 位作者 Yijian Huang Siqian Chen Yi Lu Zhipan Zhang 《Journal of Earth Science》 SCIE CAS CSCD 2014年第4期701-712,共12页
Qikou sag, located in north-center of Huanghua depression in Bohai Basin, is a Cenozoic sag with rich hydrocarbon. As a microcosm of Bohai Basin, the fault characteristics of Cenozoic structural layers in Qikou sag co... Qikou sag, located in north-center of Huanghua depression in Bohai Basin, is a Cenozoic sag with rich hydrocarbon. As a microcosm of Bohai Basin, the fault characteristics of Cenozoic structural layers in Qikou sag could indicate and record the evolution of Cenozoic stress field in Bohai Basin. Based on the latest 3-D seismic data, the study takes statistics on the fault system of Cenozoic structural layers and analyzes the fault throws of major large faults along the strikes in different periods in Qikou sag, then the fault distribution regularities and the fault direction characteristics in each structural layer are summarized. The result shows that during Cenozoic, the fault activity strength migrates from southwest to northeast and the strikes of faults changes from northwestward in Sha-3 period to nearly east-westward since Sha-1 period. 展开更多
关键词 Bohai Basin Qikou sag fault statistics tectonic migration.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部