期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Lubrication antagonism mechanism of nano-MoS_(2)and soot particles in ester base oil
1
作者 chonglong zhong Kunhong HU +2 位作者 Yong XU Enzhu HU Xianguo HU 《Friction》 SCIE EI CAS CSCD 2024年第12期2692-2706,共15页
Spherical nano-MoS_(2)(S-MoS_(2))has excellent lubricating properties and potential application value in engine oil additives.Engine soot can enter the engine oil,so the tribological interaction between S-MoS_(2)and d... Spherical nano-MoS_(2)(S-MoS_(2))has excellent lubricating properties and potential application value in engine oil additives.Engine soot can enter the engine oil,so the tribological interaction between S-MoS_(2)and diesel combustion soot(DCS)should be investigated.In this study,DCS was used to simulate engine soot.The interaction was investigated in dioctyl sebacate(DOS),and the interaction mechanism was full characterized.Results showed that S-MoS_(2)and DCS had obvious antagonism effects on lubrication.The 0.5%S-MoS_(2)exhibited good lubricating properties in DOS,which could reduce friction by~22%and wear by~54%.However,after 0.5%S-MoS_(2)was added to the 0.5%DCS contaminated DOS,the lubrication performance was not improved and was even worse than that without S-MoS_(2).When S-MoS_(2)was added for DOS lubrication,a tribofilm containing MoS_(2)formed on the friction surface,but simultaneously adding 0.5%DCS resulted in the disappearance of the MoS_(2)tribofilm.Moreover,under the action of friction heat,DCS and S-MoS_(2)could form hard Mo_(x)C_(y),thereby increasing abrasive wear.Finally,a preliminary deantagonism method was provided.After 2.0%zinc isooctyl dithiophosphate was added to the above antagonistic system,the friction coefficient did not show visible changes,but the wear recovered to a level close to that when only S-MoS_(2)was added.The antiantagonism method is not very satisfactory and some more efficient methods need to be further explored. 展开更多
关键词 MoS_(2) nanoparticles tribological properties SOOT lubricant additive
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部