In this paper,a class of Kirchhoff type equations in R^(N)(N≥3)with zero mass and a critical term is studied.Under some appropriate conditions,the existence of multiple solutions is obtained by using variational meth...In this paper,a class of Kirchhoff type equations in R^(N)(N≥3)with zero mass and a critical term is studied.Under some appropriate conditions,the existence of multiple solutions is obtained by using variational methods and a variant of Symmetric Mountain Pass theorem.The Second Concentration Compactness lemma is used to overcome the lack of compactness in critical problem.Compared to the usual Kirchhoff-type problems,we only require the nonlinearity to satisfy the classical superquadratic condition(Ambrosetti-Rabinowitz condition).展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.11701346,11671239,11801338)the Natural Science Foundation of Shanxi Province(Grant No.201801D211001)+1 种基金the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(Grant No.2019L0024)the Research Project Supported by Shanxi Scholarship Council of China(Grant No.2020-005).
文摘In this paper,a class of Kirchhoff type equations in R^(N)(N≥3)with zero mass and a critical term is studied.Under some appropriate conditions,the existence of multiple solutions is obtained by using variational methods and a variant of Symmetric Mountain Pass theorem.The Second Concentration Compactness lemma is used to overcome the lack of compactness in critical problem.Compared to the usual Kirchhoff-type problems,we only require the nonlinearity to satisfy the classical superquadratic condition(Ambrosetti-Rabinowitz condition).