The study investigated the influence of Tropical cyclone (TCs) to the plant productivity indices along the coast of Tanzania using both field observations and change detection methods. These indices are normally desig...The study investigated the influence of Tropical cyclone (TCs) to the plant productivity indices along the coast of Tanzania using both field observations and change detection methods. These indices are normally designed to maximize the sensitivity of the vegetation characteristics and are very crucial in monitoring droughts intensity, yield and biomass amongst others. The study used three types of satellite imageries including the 16 days Moderate Resolution Imaging Spectroradiometer (MODIS) of 250 <span><span><span style="font-family:;" "="">×<span> 250 m resolution;8 days Landsat 7 enhanced thematic mapper (ETM) with resolution of 30 </span>×<span> 30 m composites, and 5 Landsat 8 (LC8) images, to determine the patterns and the variability of the Normalized Difference Vegetation Index (NDVI) and En<span>hanced Vegetation Index (EVI) and TCs impacts on vegetation. Moreover, we</span> <span>used Tropical Rainfall Measuring Mission (TRMM) data and the daily to</span> monthly rainfall data from Tanzanian Meteorological Authority (TMA). The change detection between the pre and post storm (TCs) conditions was used to analyse inter annual variability of EVI over Chwaka, Rufiji and Pugu— Kazimzumbwi. The changes in NDVI and EVI and monthly rainfall at the coastal stations were calculated, plotted and analyzed. The results revealed that, highest EVI values over coastal Tanzania were observed during March <span>and April, and minimum (low) values in November. The results for EV</span>I changes based on pre and post storm conditions revealed that most observed stations and most TCs led to significant EVI changes which ranged from </span>-<span>0.05 to 0.19, and </span>-<span>0.3 to 0.22, for MODIS and L7 ETM data, respectively. As for the spatial changes in NDVI results revealed that, TCs (Besija and Fob<span>ane) </span><span>were associated with positive NDVI changes <i>i.e.</i> (enhancement) of >0.51 </span><span>an</span>d >0.31, and NDVI reduction (<i>i.e.</i> negative changes) of <0.02 and <</span>-<span>0.19 <span>for Chwaka and Rufiji, respectively. Besides the results revealed that, TCs episodes have induced a land cover changes from <i>i.e.</i> water covered areas</span> changed to be vegetation covered especially over the shorelines and inter tidal areas. Indeed, these results were consistent with the analysis of rainfall patterns which indicated that low rainfall occurred in low NDVI areas and vice versa.</span></span></span></span>展开更多
文摘The study investigated the influence of Tropical cyclone (TCs) to the plant productivity indices along the coast of Tanzania using both field observations and change detection methods. These indices are normally designed to maximize the sensitivity of the vegetation characteristics and are very crucial in monitoring droughts intensity, yield and biomass amongst others. The study used three types of satellite imageries including the 16 days Moderate Resolution Imaging Spectroradiometer (MODIS) of 250 <span><span><span style="font-family:;" "="">×<span> 250 m resolution;8 days Landsat 7 enhanced thematic mapper (ETM) with resolution of 30 </span>×<span> 30 m composites, and 5 Landsat 8 (LC8) images, to determine the patterns and the variability of the Normalized Difference Vegetation Index (NDVI) and En<span>hanced Vegetation Index (EVI) and TCs impacts on vegetation. Moreover, we</span> <span>used Tropical Rainfall Measuring Mission (TRMM) data and the daily to</span> monthly rainfall data from Tanzanian Meteorological Authority (TMA). The change detection between the pre and post storm (TCs) conditions was used to analyse inter annual variability of EVI over Chwaka, Rufiji and Pugu— Kazimzumbwi. The changes in NDVI and EVI and monthly rainfall at the coastal stations were calculated, plotted and analyzed. The results revealed that, highest EVI values over coastal Tanzania were observed during March <span>and April, and minimum (low) values in November. The results for EV</span>I changes based on pre and post storm conditions revealed that most observed stations and most TCs led to significant EVI changes which ranged from </span>-<span>0.05 to 0.19, and </span>-<span>0.3 to 0.22, for MODIS and L7 ETM data, respectively. As for the spatial changes in NDVI results revealed that, TCs (Besija and Fob<span>ane) </span><span>were associated with positive NDVI changes <i>i.e.</i> (enhancement) of >0.51 </span><span>an</span>d >0.31, and NDVI reduction (<i>i.e.</i> negative changes) of <0.02 and <</span>-<span>0.19 <span>for Chwaka and Rufiji, respectively. Besides the results revealed that, TCs episodes have induced a land cover changes from <i>i.e.</i> water covered areas</span> changed to be vegetation covered especially over the shorelines and inter tidal areas. Indeed, these results were consistent with the analysis of rainfall patterns which indicated that low rainfall occurred in low NDVI areas and vice versa.</span></span></span></span>