The aim of this study is to examine the performance of nano additives in two different sets of mortar specimens armed with reinforcing steel rebars. In particular, three sets of reinforced concrete cylinders with addi...The aim of this study is to examine the performance of nano additives in two different sets of mortar specimens armed with reinforcing steel rebars. In particular, three sets of reinforced concrete cylinders with additives of 0.1% wt of carbon nanotubes (CNTs) and carbon nanofibers (CNFs) have been exposed to a solution of 3.5% NaCl, and further examined for the impact of nano-modification on corrosion performance. The anti-corrosive performance of these additives was investigated through linear polarization technique (LPR), mass loss and mercury porosimetry technique (MIP). From the investigation results, it is found that the addition of CNTs/CNFs causes lower steel corrosion, whereas the pore structure of concrete with CNTs/CNFs can significantly reduce the mass loss rate and the relative permeability.展开更多
文摘The aim of this study is to examine the performance of nano additives in two different sets of mortar specimens armed with reinforcing steel rebars. In particular, three sets of reinforced concrete cylinders with additives of 0.1% wt of carbon nanotubes (CNTs) and carbon nanofibers (CNFs) have been exposed to a solution of 3.5% NaCl, and further examined for the impact of nano-modification on corrosion performance. The anti-corrosive performance of these additives was investigated through linear polarization technique (LPR), mass loss and mercury porosimetry technique (MIP). From the investigation results, it is found that the addition of CNTs/CNFs causes lower steel corrosion, whereas the pore structure of concrete with CNTs/CNFs can significantly reduce the mass loss rate and the relative permeability.