This study focuses on the trace and rare earth elements(REE)geochemistry of the Nkporo and Ekenkpon Shales of the Calabar Flank.The main aim is to infer their depositional environment and the degree of their metal enr...This study focuses on the trace and rare earth elements(REE)geochemistry of the Nkporo and Ekenkpon Shales of the Calabar Flank.The main aim is to infer their depositional environment and the degree of their metal enrichment.The shale samples were analyzed using inductively coupled plasma mass spectrometry.The results indicated that the mean concentrations of K,Na,and Fe in Nkporo and Ekenkpon Shales are 1.45,0.4,and 4.17 wt%,and 1.11,0.44,and 5.42 wt%;respectively.The Nkporo Shale is enriched with the following trace elements;P>Mn>Sr>Ba>Zn>Ce>Rb>Zr>V>Cr>Ni and depleted in the following trace elements;Ta>Ge>Sb>Bi>Cd>Ag>Te>In>Hg.While the Ekenkpon Shale is enriched with the following trace elements;P>Mn>Ba>Sr>V>Ce>Zr>Rb>Cr>Zn>Ni and depleted in;Sb>Ge>Bi>Ag>Ce>Te>In>Hg.The concentration of redox-sensitive elements such as V,Ni,Mo,U,Cu,Cr,Re,Cd,Sb,Ti,Mn,and their ratio V/Mo and U/Mo in the black and grey shale samples show different patterns.The REE obtained from the Nkporo and Ekenkpon Shales were PAAS normalized.The Nkporo Shale showed a slightly flat light rare-earth element(LREE),middle rare-earth element(MREE),and heavy rare earth element(HREE)pattern enrichment.Ce/Ce*ranges from 0.95 to 1.09 in Nkporo Shale and 0.67 to 1.40 in Ekenkpon Shale.The Ekenkpon Shale showed a slight LREE,MREE enrichment,and depleted HREE patterns.The Mn contents and U/Mo ratio in Nkporo and Ekenkpon Shales suggests a poor oxygen transitional environment.The V/Mo and V/(V+Ni)ratios indicated that the Nkporo shales were deposited in an anoxic to suboxic conditions and Ekenkpon shales were also deposited under an anoxic to suboxic conditions.The V/Ni ratio indicated that the organic matter in the Nkporo shale is terrigenous while that of the Ekenkpon shales are both terrigenous and marine in origin.展开更多
A detailed investigation was conducted on the relationship between land use patterns and trace metal content in surface soils of the Benue State to assess soil environmental quality. Results revealed that metals level...A detailed investigation was conducted on the relationship between land use patterns and trace metal content in surface soils of the Benue State to assess soil environmental quality. Results revealed that metals levels were generally high in mineralized and urban soils and lower in agricultural soils whilst forest soils were lease by anthropogenic pollution. Mineralized soils developed from weathered sulphides were rich in lead (Pb), zinc (Zn), and cadmium (Cd). Urban soils accumulated copper (Cu), Zn, and Cd most probably from refuse dumps, gasoline combustion and farming. Agricultural soils were enriched in arsenic (As) and to a lesser degree Pb and Cd originating most probably from the application of pesticides, manure and fertilizers. A pollution index (PI) based on plant-tolerant contamination levels, indicates that multi-element contamination in soils is low and implies that the sampled soils could be cultivated for crop production especially away from point sources of pollution. The degree of anthropogenic pollution was high for As (80%), and Pb (54%), moderate for Zn (47%), Cd (40%), and low for Cu (27%). Correlations (r) are significant between Zn- Pb (0.7), Cu-As (0.6) in mineralized soils, between Zn-Cu (0.64), Zn-Cd (0.5), Cu-Cd (0.6), in urban soils, As-Cd (0.61), in agricultural soils and Zn-Pb (0.82) in forest soils. These distinct relationships indicate a common source or similar geochemical control. Based on the overall evaluation, recommendation in respect of contamination, control and monitoring strategies as well as land use planning in the study area are presented.展开更多
文摘This study focuses on the trace and rare earth elements(REE)geochemistry of the Nkporo and Ekenkpon Shales of the Calabar Flank.The main aim is to infer their depositional environment and the degree of their metal enrichment.The shale samples were analyzed using inductively coupled plasma mass spectrometry.The results indicated that the mean concentrations of K,Na,and Fe in Nkporo and Ekenkpon Shales are 1.45,0.4,and 4.17 wt%,and 1.11,0.44,and 5.42 wt%;respectively.The Nkporo Shale is enriched with the following trace elements;P>Mn>Sr>Ba>Zn>Ce>Rb>Zr>V>Cr>Ni and depleted in the following trace elements;Ta>Ge>Sb>Bi>Cd>Ag>Te>In>Hg.While the Ekenkpon Shale is enriched with the following trace elements;P>Mn>Ba>Sr>V>Ce>Zr>Rb>Cr>Zn>Ni and depleted in;Sb>Ge>Bi>Ag>Ce>Te>In>Hg.The concentration of redox-sensitive elements such as V,Ni,Mo,U,Cu,Cr,Re,Cd,Sb,Ti,Mn,and their ratio V/Mo and U/Mo in the black and grey shale samples show different patterns.The REE obtained from the Nkporo and Ekenkpon Shales were PAAS normalized.The Nkporo Shale showed a slightly flat light rare-earth element(LREE),middle rare-earth element(MREE),and heavy rare earth element(HREE)pattern enrichment.Ce/Ce*ranges from 0.95 to 1.09 in Nkporo Shale and 0.67 to 1.40 in Ekenkpon Shale.The Ekenkpon Shale showed a slight LREE,MREE enrichment,and depleted HREE patterns.The Mn contents and U/Mo ratio in Nkporo and Ekenkpon Shales suggests a poor oxygen transitional environment.The V/Mo and V/(V+Ni)ratios indicated that the Nkporo shales were deposited in an anoxic to suboxic conditions and Ekenkpon shales were also deposited under an anoxic to suboxic conditions.The V/Ni ratio indicated that the organic matter in the Nkporo shale is terrigenous while that of the Ekenkpon shales are both terrigenous and marine in origin.
文摘A detailed investigation was conducted on the relationship between land use patterns and trace metal content in surface soils of the Benue State to assess soil environmental quality. Results revealed that metals levels were generally high in mineralized and urban soils and lower in agricultural soils whilst forest soils were lease by anthropogenic pollution. Mineralized soils developed from weathered sulphides were rich in lead (Pb), zinc (Zn), and cadmium (Cd). Urban soils accumulated copper (Cu), Zn, and Cd most probably from refuse dumps, gasoline combustion and farming. Agricultural soils were enriched in arsenic (As) and to a lesser degree Pb and Cd originating most probably from the application of pesticides, manure and fertilizers. A pollution index (PI) based on plant-tolerant contamination levels, indicates that multi-element contamination in soils is low and implies that the sampled soils could be cultivated for crop production especially away from point sources of pollution. The degree of anthropogenic pollution was high for As (80%), and Pb (54%), moderate for Zn (47%), Cd (40%), and low for Cu (27%). Correlations (r) are significant between Zn- Pb (0.7), Cu-As (0.6) in mineralized soils, between Zn-Cu (0.64), Zn-Cd (0.5), Cu-Cd (0.6), in urban soils, As-Cd (0.61), in agricultural soils and Zn-Pb (0.82) in forest soils. These distinct relationships indicate a common source or similar geochemical control. Based on the overall evaluation, recommendation in respect of contamination, control and monitoring strategies as well as land use planning in the study area are presented.