Looking at all the indeterminate factors as a whole and regarding activity durations as independent random variables, the traditional stochastic network planning models ignore the inevitable relationship and dependenc...Looking at all the indeterminate factors as a whole and regarding activity durations as independent random variables, the traditional stochastic network planning models ignore the inevitable relationship and dependence among activity durations when more than one activity is possibly affected by the same indeterminate factors. On this basis of analysis of indeterminate effect factors of durations, the effect factors-based stochastic network planning (EFBSNP) model is proposed, which emphasizes on the effects of not only logistic and organizational relationships, but also the dependent relationships, due to indeterminate factors among activity durations on the project period. By virtue of indeterminate factor analysis the model extracts and describes the quantitatively indeterminate effect factors, and then takes into account the indeterminate factors effect schedule by using the Monte Carlo simulation technique. The method is flexible enough to deal with effect factors and is coincident with practice. A software has been developed to simplify the model-based calculation, in VisualStudio.NET language. Finally, a case study is included to demonstrate the applicability of the proposed model and comparison is made with some advantages over the existing models.展开更多
文摘Looking at all the indeterminate factors as a whole and regarding activity durations as independent random variables, the traditional stochastic network planning models ignore the inevitable relationship and dependence among activity durations when more than one activity is possibly affected by the same indeterminate factors. On this basis of analysis of indeterminate effect factors of durations, the effect factors-based stochastic network planning (EFBSNP) model is proposed, which emphasizes on the effects of not only logistic and organizational relationships, but also the dependent relationships, due to indeterminate factors among activity durations on the project period. By virtue of indeterminate factor analysis the model extracts and describes the quantitatively indeterminate effect factors, and then takes into account the indeterminate factors effect schedule by using the Monte Carlo simulation technique. The method is flexible enough to deal with effect factors and is coincident with practice. A software has been developed to simplify the model-based calculation, in VisualStudio.NET language. Finally, a case study is included to demonstrate the applicability of the proposed model and comparison is made with some advantages over the existing models.