The theoretical specific energy of lithium-air battery is as high as 3436 Wh.kg^-1, and the possible achieved value may reach 600-700 Wh.kg^-l, which enables this energy storage system as an important propulsion power...The theoretical specific energy of lithium-air battery is as high as 3436 Wh.kg^-1, and the possible achieved value may reach 600-700 Wh.kg^-l, which enables this energy storage system as an important propulsion power sources for electric vehicles with the driving range of 500-800 km. Currently, Li-air batteries are facing main challenges at stability, efficiency, applicability and safety. In particular, from a practical view of point, the Li-air batteries should be operated directly in ambient air. Solid-state battery system is the best avenue to eventually solve these main issues. At the heart of the solid state, Li-air technology is the solid-state Li^+-conducting ceramic material. Developing solid-state lithium-air batteries (SSLAB) can solve the problem of applicability fundamentally and circumvent the safety issues completely, and it is also an important avenue to improve the stability of the battery system. In this paper, we provide a systematical review of the progress in the cell construction, the regulation of the electrode/electrolyte interface, the cell assembly, the electrochemical performance and the mechanism for the SSLAB. In every section, the contributions of the recent research progress in the main challenges and the remained questions will be commented. Based on these reviews, we attempt to propose some alternative approaches for the next stage and suggest a development prospective for the SSLAB.展开更多
基金financially supported by the ‘‘Hundred Talents’’ program of the Chinese Academy of Sciences(2015)‘‘The Recruitment Program of Global Experts’’ in Shanghai(2016)the National Natural Science Foundation of China(Nos.51672299 and 51772314)
文摘The theoretical specific energy of lithium-air battery is as high as 3436 Wh.kg^-1, and the possible achieved value may reach 600-700 Wh.kg^-l, which enables this energy storage system as an important propulsion power sources for electric vehicles with the driving range of 500-800 km. Currently, Li-air batteries are facing main challenges at stability, efficiency, applicability and safety. In particular, from a practical view of point, the Li-air batteries should be operated directly in ambient air. Solid-state battery system is the best avenue to eventually solve these main issues. At the heart of the solid state, Li-air technology is the solid-state Li^+-conducting ceramic material. Developing solid-state lithium-air batteries (SSLAB) can solve the problem of applicability fundamentally and circumvent the safety issues completely, and it is also an important avenue to improve the stability of the battery system. In this paper, we provide a systematical review of the progress in the cell construction, the regulation of the electrode/electrolyte interface, the cell assembly, the electrochemical performance and the mechanism for the SSLAB. In every section, the contributions of the recent research progress in the main challenges and the remained questions will be commented. Based on these reviews, we attempt to propose some alternative approaches for the next stage and suggest a development prospective for the SSLAB.