As modern accelerator technologies advance toward more compact sizes,conventional invasive diagnostic methods of cavity detuning introduce negligible interference in measurements and run the risk of harming structural...As modern accelerator technologies advance toward more compact sizes,conventional invasive diagnostic methods of cavity detuning introduce negligible interference in measurements and run the risk of harming structural surfaces.To overcome these difficulties,this study developed a non-invasive diagnostic method using knowledge of scattering parameters with a convolutional neural network and the interior point method.Meticulous construction and training of the neural network led to remarkable results on three typical acceleration structures:a 13-cell S-band standing-wave linac,a 12-cell X-band traveling-wave linac,and a 3-cell X-band RF gun.The trained networks significantly reduced the burden of the tuning process,freed researchers from tedious tuning tasks,and provided a new perspective for the tuning of side-coupling,semi-enclosed,and total-enclosed structures.展开更多
基金supported by the National Natural Science Foundation of China(No.11922504).
文摘As modern accelerator technologies advance toward more compact sizes,conventional invasive diagnostic methods of cavity detuning introduce negligible interference in measurements and run the risk of harming structural surfaces.To overcome these difficulties,this study developed a non-invasive diagnostic method using knowledge of scattering parameters with a convolutional neural network and the interior point method.Meticulous construction and training of the neural network led to remarkable results on three typical acceleration structures:a 13-cell S-band standing-wave linac,a 12-cell X-band traveling-wave linac,and a 3-cell X-band RF gun.The trained networks significantly reduced the burden of the tuning process,freed researchers from tedious tuning tasks,and provided a new perspective for the tuning of side-coupling,semi-enclosed,and total-enclosed structures.