In the heavy clutter environment, the information capacity is large,the relationships among information are complicated, and track initiationoften has a high false alarm rate or missing alarm rate. Obviously, it is ad...In the heavy clutter environment, the information capacity is large,the relationships among information are complicated, and track initiationoften has a high false alarm rate or missing alarm rate. Obviously, it is adifficult task to get a high-quality track initiation in the limited measurementcycles. This paper studies the multi-target track initiation in heavy clutter.At first, a relaxed logic-based clutter filter algorithm is presented. In thealgorithm, the raw measurement is filtered by using the relaxed logic method.We not only design a kind of incremental and adaptive filtering gate, but alsoadd the angle extrapolation based on polynomial extrapolation. The algorithm eliminates most of the clutter and obtains the environment with highdetection rate and less clutter. Then, we propose a fuzzy sequential Houghtransform-based track initiation algorithm. The algorithm establishes a newmeshing rule according to system noise to balance the relationship between thegrid granularity and the track initiation quality. And a flexible superpositionmatrix based on fuzzy clustering is constructed, which avoids the transformation error caused by 0–1 voting method in traditional Hough transform.In addition, the algorithm allows the superposition matrixes of nonadjacentcycles to be associated to overcome the shortcoming that the track can’t beinitiated in time when the measurements appear in an intermittent way. Anda slope verification method is introduced to detect formation-intensive serialtracks. Last, the sliding window method is employed to feedback the trackinitiation results timely and confirm the track. Simulation results verify thatthe proposed algorithms can initiate the tracks accurately in heavy clutter.展开更多
基金This work is supported in part by the Fundamental Research Funds for the Central Universities,Jilin University under Grant No.93K172021K04.
文摘In the heavy clutter environment, the information capacity is large,the relationships among information are complicated, and track initiationoften has a high false alarm rate or missing alarm rate. Obviously, it is adifficult task to get a high-quality track initiation in the limited measurementcycles. This paper studies the multi-target track initiation in heavy clutter.At first, a relaxed logic-based clutter filter algorithm is presented. In thealgorithm, the raw measurement is filtered by using the relaxed logic method.We not only design a kind of incremental and adaptive filtering gate, but alsoadd the angle extrapolation based on polynomial extrapolation. The algorithm eliminates most of the clutter and obtains the environment with highdetection rate and less clutter. Then, we propose a fuzzy sequential Houghtransform-based track initiation algorithm. The algorithm establishes a newmeshing rule according to system noise to balance the relationship between thegrid granularity and the track initiation quality. And a flexible superpositionmatrix based on fuzzy clustering is constructed, which avoids the transformation error caused by 0–1 voting method in traditional Hough transform.In addition, the algorithm allows the superposition matrixes of nonadjacentcycles to be associated to overcome the shortcoming that the track can’t beinitiated in time when the measurements appear in an intermittent way. Anda slope verification method is introduced to detect formation-intensive serialtracks. Last, the sliding window method is employed to feedback the trackinitiation results timely and confirm the track. Simulation results verify thatthe proposed algorithms can initiate the tracks accurately in heavy clutter.