期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Scutellarin protects human cardiac microvascular endothelial cells with hypoxia-reoxygenation injury via JAK2/STAT3 signal pathway 被引量:2
1
作者 Chen Chen Zhi-ying Weng +7 位作者 You-lan Wang Chang-bo Zheng Yang Li Jian Yang Ze-lan Dai Bai-xi Ji chuang xiao Wei-min Yang 《Chinese Herbal Medicines》 CAS 2019年第1期103-107,共5页
Objective: To investigate the antagonistic cell injury effect and molecular mechanism of scutellarin(SCU)in hypoxia reoxygenation(HR) treated human cardiac microvascular endothelial cells(HCMECs).Methods: The method o... Objective: To investigate the antagonistic cell injury effect and molecular mechanism of scutellarin(SCU)in hypoxia reoxygenation(HR) treated human cardiac microvascular endothelial cells(HCMECs).Methods: The method of 12 h hypoxia following by 12 h reoxygenation was used to culture HCMECs in vitro to built cell injury model. The groups were divided into control group, model(HR) group, and HR + SCU(0.1 μmol/L, 1 μmol/L, and 10 μmol/L) group. The cell viability was determined by MTT, and oxidative stress was detected by malondialdehyde(MDA) levels by biochemical assay kit. Protein expression of JAK2/p-JAK2 and STAT3/p-STAT3 were evaluated by Western blot.Results: The results of MTT and MDA showed that HR decreased the cell viability(P < 0.05) and increased MDA level significantly(P < 0.05), SCU played a contrary role in these processes. Western blot analysis indicates that, the expression of JAK2 and p-JAK2, STAT3, and p-STAT3 were increased in model group when compared with control group(P < 0.05); Compared with model group, their expression were reduced by SCU(P < 0.05).Conclusion: SCU took a protective effect on HR-treated HCMECs, and the molecular mechanism may be associated with the inhibition of JAK2/STAT3 signal transduction pathway. 展开更多
关键词 cell VIABILITY HCMECs hypoxia REOXYGENATION JAK2-STAT3 pathway MDA SCUTELLARIN
原文传递
Preparation of green cellulose diacetate-based antibacterial wound dressings for wound healing
2
作者 chuang xiao Ge ZHANG +6 位作者 Wencheng LIANG Zhaochuang WANG Qiaohui LU Weibin SHI Yan ZHOU Yong GUAN Meidong LANG 《Frontiers of Materials Science》 SCIE CSCD 2022年第2期83-97,共15页
Managing wounds is a growing universal problem and developing effective wound dressings to staunch bleeding and protect wounds from bacterial infections is an increasingly serious challenge.In this work,a remolding el... Managing wounds is a growing universal problem and developing effective wound dressings to staunch bleeding and protect wounds from bacterial infections is an increasingly serious challenge.In this work,a remolding electrospinning nanofiber three-dimensional structure wound dressing(CCP)was prepared with superhydrophilicity,high water absorption and absorbing capacity,excellent hemostatic capacity and antibacterial ability,and biocompatibility to promote wound healing.Polyhexamethylene guanidine hydrochloride(PHMG)was grafted to cellulose diacetate(CDA)wound dressing surface through an amide reaction.A water contact angle analysis demonstrated that CCP wound dressing could be beneficial to promote wound exudate management effectively with rapid absorption of water within 0.2 s.In vitro hemo-and cytocompatibility assay showed that a CCP wound dressing had no significant hemotoxicity or cytoxicity.Specifically,CCP wound dressings could be beneficial to accelerate wound hemostasis and further reduce mortality caused by uncontrolled bleeding.Furthermore,CCP wound dressings have an excellent antibacterial ability,which could be beneficial to inhibit wound inflammatory over-reaction and promote normal wound healing.Combined together,the prepared wound dressing in this research effort is expected to have high-potential in clinical applications. 展开更多
关键词 cellulose diacetate ELECTROSPINNING antibacterial performance HEMOSTASIS wound dressing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部