期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
The Neumann Problem of Complex Special Lagrangian Equations with Supercritical Phase 被引量:4
1
作者 chuanqiang chen Xinan Ma Wei Wei 《Analysis in Theory and Applications》 CSCD 2019年第2期144-162,共19页
Inspired by the Neumann problem of real special Lagrangian equations with supercritical phase, we consider the Neumann problem of complex special Lagrangian equations with supercritical phase in this paper, and establ... Inspired by the Neumann problem of real special Lagrangian equations with supercritical phase, we consider the Neumann problem of complex special Lagrangian equations with supercritical phase in this paper, and establish the global C^2 estimates and the existence theorem by the method of continuity. 展开更多
关键词 SPECIAL LAGRANGIAN EQUATION NEUMANN PROBLEM SUPERCRITICAL phase
原文传递
Curvature Estimates for the Level Sets of Solutions to the Monge-Ampère Equation det D^2u = 1 被引量:4
2
作者 chuanqiang chen Xinan MA Shujun SHI 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2014年第6期895-906,共12页
For the Monge-Amp`ere equation det D2u = 1, the authors find new auxiliary curvature functions which attain their respective maxima on the boundary. Moreover, the upper bounded estimates for the Gauss curvature and th... For the Monge-Amp`ere equation det D2u = 1, the authors find new auxiliary curvature functions which attain their respective maxima on the boundary. Moreover, the upper bounded estimates for the Gauss curvature and the mean curvature of the level sets for the solution to this equation are obtained. 展开更多
关键词 Curvature estimates Level sets Monge-Ampere equation
原文传递
椭圆和抛物方程解的水平集的微观凸性
3
作者 陈传强 麻希南 《中国科学:数学》 CSCD 北大核心 2018年第10期1205-1218,共14页
偏微分方程解的水平集是一个重要研究对象,与偏微分方程解的存在性、唯一性和正则性紧密相关.本文介绍椭圆和抛物方程解的水平集的微观凸性原理.
关键词 水平集 常秩定理 微观凸性
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部