This study takes a fractured rock mass in the Datengxia Hydropower Station,China as an example to analyze the size effects and determine the representative elementary sizes.A novel method considering geometric paramet...This study takes a fractured rock mass in the Datengxia Hydropower Station,China as an example to analyze the size effects and determine the representative elementary sizes.A novel method considering geometric parameter distributions is proposed in this work.The proposed method can quickly and simply determine the size effects and representative elementary sizes.Specifically,geometric parameter distributions,including fracture frequency,size and orientation,are generated on the basis of the Bernoulli trial and Monte Carlo simulation.The distributions are assessed using the coefficient of variation(CV),and the acceptable variations for CV(5%,10%and 20%)are used to determine representative elementary sizes.Generally,the representative element of rock masses is the representative elementary volume(REV).The present study extends the representative element to other dimensions,i.e.representative elementary length(REL)and representative elementary area(REA)for one and two dimensions,respectively.REL and REA are useful in studying the size effects of one-(1D)and twodimensional(2D)characteristics of rock masses.The relationships among multi-dimensional representative elementary sizes are established.The representative elementary sizes reduce with the increase in the dimensions,and REA and REV can be deduced by REL.Therefore,the proposed method can quickly and simply determine REL and further estimate REA and REV,which considerably improves the efficiency of rock mass analysis.展开更多
Mixed redundancy strategies are generally used in cloud-based systems,with different node switch mechanisms from traditional fault-tolerant strategies.Existing studies often concentrate on optimizing a single strategy...Mixed redundancy strategies are generally used in cloud-based systems,with different node switch mechanisms from traditional fault-tolerant strategies.Existing studies often concentrate on optimizing a single strategy in cloud computing environment and ignore the impact of mixed redundancy strategies.Therefore,a model is proposed to evaluate and optimize the reliability and performance of cloud-based degraded systems subject to a mixed active and cold standby redundancy strategy.In this strategy,node switching is triggered by a continual monitoring and detection mechanism when active nodes fail.To evaluate the transient availability and the expected job completion rate of systems with such kind of strategy,a continuous-time Markov chain model is built on the state transition process and a numerical method is used to solve the model.To choose the optimal redundancy for the mixed strategy under system constraints,a greedy search algorithm is proposed after sensitivity analysis.Illustrative examples were presented to explain the process of calculating the transient probability of each system state and in turn,the availability and performance of the whole system.It was shown that the near-optimal redundancy solution could be obtained using the optimizationmethod.The comparison with optimization of the traditional mixed redundancy strategy proved that the system behavior was different using different kinds of mixed strategies and less redundancy was assigned for the new type of mixed strategy under the same system constraint.展开更多
The order Acipenseriformes,which includes sturgeons and paddlefishes,represents“living fossils”with complex genomes that are good models for understanding whole-genome duplication(WGD)and ploidy evolution in fishes....The order Acipenseriformes,which includes sturgeons and paddlefishes,represents“living fossils”with complex genomes that are good models for understanding whole-genome duplication(WGD)and ploidy evolution in fishes.Here,we sequenced and assembled the first high-quality chromosome-level genome for the complex octoploid Acipenser sinensis(Chinese sturgeon),a critically endangered species that also represents a poorly understood ploidy group in Acipenseriformes.Our results show that A.sinensis is a complex autooctoploid species containing four kinds of octovalents(8n),a hexavalent(6n),two tetravalents(4n),and a divalent(2n).An analysis taking into account delayed rediploidization reveals that the octoploid genome composition of Chinese sturgeon results from two rounds of homologous WGDs,and further provides insights into the timing of its ploidy evolution.This study provides the first octoploid genome resource of Acipenseriformes for understanding ploidy compositions and evolutionary trajectories of polyploid fishes.展开更多
文摘This study takes a fractured rock mass in the Datengxia Hydropower Station,China as an example to analyze the size effects and determine the representative elementary sizes.A novel method considering geometric parameter distributions is proposed in this work.The proposed method can quickly and simply determine the size effects and representative elementary sizes.Specifically,geometric parameter distributions,including fracture frequency,size and orientation,are generated on the basis of the Bernoulli trial and Monte Carlo simulation.The distributions are assessed using the coefficient of variation(CV),and the acceptable variations for CV(5%,10%and 20%)are used to determine representative elementary sizes.Generally,the representative element of rock masses is the representative elementary volume(REV).The present study extends the representative element to other dimensions,i.e.representative elementary length(REL)and representative elementary area(REA)for one and two dimensions,respectively.REL and REA are useful in studying the size effects of one-(1D)and twodimensional(2D)characteristics of rock masses.The relationships among multi-dimensional representative elementary sizes are established.The representative elementary sizes reduce with the increase in the dimensions,and REA and REV can be deduced by REL.Therefore,the proposed method can quickly and simply determine REL and further estimate REA and REV,which considerably improves the efficiency of rock mass analysis.
基金supported by the National Natural Science Foundation of China(Grant No.61309005)the Basic and Frontier Research Program of Chongqing(Grant No.cstc2014jcyj A40015)
文摘Mixed redundancy strategies are generally used in cloud-based systems,with different node switch mechanisms from traditional fault-tolerant strategies.Existing studies often concentrate on optimizing a single strategy in cloud computing environment and ignore the impact of mixed redundancy strategies.Therefore,a model is proposed to evaluate and optimize the reliability and performance of cloud-based degraded systems subject to a mixed active and cold standby redundancy strategy.In this strategy,node switching is triggered by a continual monitoring and detection mechanism when active nodes fail.To evaluate the transient availability and the expected job completion rate of systems with such kind of strategy,a continuous-time Markov chain model is built on the state transition process and a numerical method is used to solve the model.To choose the optimal redundancy for the mixed strategy under system constraints,a greedy search algorithm is proposed after sensitivity analysis.Illustrative examples were presented to explain the process of calculating the transient probability of each system state and in turn,the availability and performance of the whole system.It was shown that the near-optimal redundancy solution could be obtained using the optimizationmethod.The comparison with optimization of the traditional mixed redundancy strategy proved that the system behavior was different using different kinds of mixed strategies and less redundancy was assigned for the new type of mixed strategy under the same system constraint.
基金supported by the Three Gorges Environmental Funds of China Three Gorges Corporation(Grant No.XN270)。
文摘The order Acipenseriformes,which includes sturgeons and paddlefishes,represents“living fossils”with complex genomes that are good models for understanding whole-genome duplication(WGD)and ploidy evolution in fishes.Here,we sequenced and assembled the first high-quality chromosome-level genome for the complex octoploid Acipenser sinensis(Chinese sturgeon),a critically endangered species that also represents a poorly understood ploidy group in Acipenseriformes.Our results show that A.sinensis is a complex autooctoploid species containing four kinds of octovalents(8n),a hexavalent(6n),two tetravalents(4n),and a divalent(2n).An analysis taking into account delayed rediploidization reveals that the octoploid genome composition of Chinese sturgeon results from two rounds of homologous WGDs,and further provides insights into the timing of its ploidy evolution.This study provides the first octoploid genome resource of Acipenseriformes for understanding ploidy compositions and evolutionary trajectories of polyploid fishes.