Calcium-ion batteries(CIBs)have generated intense interest due to the growing demand for safer,cheaper,and large-scale energy storage systems.However,their development is still in its infancy,owing to the lack of suit...Calcium-ion batteries(CIBs)have generated intense interest due to the growing demand for safer,cheaper,and large-scale energy storage systems.However,their development is still in its infancy,owing to the lack of suitable cathodes for sustaining reversiblc Ca^(2+)intercalation/deintercalation.Herein,layered H_(2)V_(3)O_(8)(HVO)with Zn^(2+)pre-insertion(ZHVO)is reported as a high-rate and highly durable cathode material for CIBs.The existence of Zn^(2+)and H_(2)O pillars could expand the interlayer spacing up to 1.8 nm,which is favorable for the diffusion of bulky Ca^(2+).The formation of Zn-O bonds facilitates electron transfer and enhances electrical conduction.Consequently,the ZHVO cathode achieves superior capacity performance(213.9 mAh·g^(-1)at 0.2 A·g^(-1))and long lifespan(78.3%for 1,000 cycles at 5 A·g^(-1))compared to pristine HVO.Density functional theory(DFT)calculations revealed that Zn^(2+)moved during Ca^(2+)intercalation,thereby reducing the diffusion energy barrier and facilitating Ca^(2+)diffusion.Finally,a safe aqueous calcium ion cell was successfully assembled.展开更多
基金financially supported by the Open Research Found of Songshan Lake Materials Laboratory(No.2021SLABFN04)National Natural Science Foundation of China(Nos.22109134 and 52171025)+1 种基金Guangdong Basic and Applied Basic Research Foundation(No.2022A1515010920)the Outstanding Youth Basic Research Project of Shenzhen(No.RCYX20221008092934093)。
文摘Calcium-ion batteries(CIBs)have generated intense interest due to the growing demand for safer,cheaper,and large-scale energy storage systems.However,their development is still in its infancy,owing to the lack of suitable cathodes for sustaining reversiblc Ca^(2+)intercalation/deintercalation.Herein,layered H_(2)V_(3)O_(8)(HVO)with Zn^(2+)pre-insertion(ZHVO)is reported as a high-rate and highly durable cathode material for CIBs.The existence of Zn^(2+)and H_(2)O pillars could expand the interlayer spacing up to 1.8 nm,which is favorable for the diffusion of bulky Ca^(2+).The formation of Zn-O bonds facilitates electron transfer and enhances electrical conduction.Consequently,the ZHVO cathode achieves superior capacity performance(213.9 mAh·g^(-1)at 0.2 A·g^(-1))and long lifespan(78.3%for 1,000 cycles at 5 A·g^(-1))compared to pristine HVO.Density functional theory(DFT)calculations revealed that Zn^(2+)moved during Ca^(2+)intercalation,thereby reducing the diffusion energy barrier and facilitating Ca^(2+)diffusion.Finally,a safe aqueous calcium ion cell was successfully assembled.