期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of tight junction protein of intestinal epithelium and permeability of colonic mucosa in pathogenesis of injured colonic barrier during chronic recovery stage of rats with inflammatory bowel disease 被引量:2
1
作者 chun-mei xu Xiu-Mei Li +1 位作者 Bing-Zhao Qin Bo Liu 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2016年第2期143-147,共5页
Objective: To discuss the changes in the tight junction protein of intestinal epithelium and permeability of colonic mucosa and its possible mechanism by building the rat mode of inflammatory bowel disease at the chro... Objective: To discuss the changes in the tight junction protein of intestinal epithelium and permeability of colonic mucosa and its possible mechanism by building the rat mode of inflammatory bowel disease at the chronic recovery stage. Methods: A total of 36 SD rats were divided into the model group and control one according to the random number table, with 18 rats in each group. Rats in the model group were given the 3% dextran sulfate sodium solution by the way of drinking for 7 d to build the rat model of inflammatory bowel disease, while rats in the control group were given free drinking of water. Six rats were executed at day 7, 14 and 21 respectively. The colonic tissues were collected from rats to observe the pathological changes of colonic mucosa. The activity of myeloperoxidase was detected and the white blood count was performed for rats in each group. The Ussing chamber technique was employed to detect the transepithelial electrical resistance(TER) and short-circuit current(SC) of colonic mucosa of rats in different time intervals; the quantum dots labeling technique was employed to detect the expression level of claudin-1 and claudin-2 in the colonic tissues. Results: After the successful modeling, the weight of rats in the model group was significantly reduced, while the disease activity index score was increased. The weight was at the lowest level at day 14 and then it began to increase afterwards. The disease activity index score was at the highest level at day 12 and then it began to decrease gradually. The activity of myeloperoxidase and WBC for rats in the model group all reached the peak value at day 14 and then decreased gradually. There was no significant difference in the changes of TER and SC in different time intervals for rats in the control group(P>0.05). TER of model group was at the lowest level at day 14 and then increased gradually; SC was at the highest level at day 14 and then decreased gradually. TER of model group at day 7, 14 and 21 was significantly lower than that of control group, while SC of model group was significantly higher than that of control group(P<0.05). There was no significant difference in the change of mean fluorescence intensity of claudin-1 and claudin-2 in different time intervals for rats in the control group(P>0.05). The claudin-1 and claudin-2 for rats in the model group reached the highest level at day 14 and then decreased gradually. The claudin-1 and claudin-2 of model group at day 7, 14 and 21 was significantly higher than that of control group(P<0.05). Conclusions: After the acute stage, the inflammatory bowel disease is then in the chronic recovery stage; the increased permeability of colonic mucosa and increased expression of tight junction protein of intestinal epithelium are closely related to the pathogenesis and development of disease. The tight junction protein plays a key role in the pathogenesis of injured colonic barrier of inflammatory bowel disease. 展开更多
关键词 Inflammatory BOWEL disease Tight junction protein COLONIC MUCOSA PERMEABILITY COLONIC BARRIER
下载PDF
Manipulating metal-sulfur interactions for achieving high-performance S cathodes for room temperature Li/Na-sulfur batteries 被引量:1
2
作者 Ying-Ying Dai chun-mei xu +6 位作者 Xiao-Hao Liu Xiang-Xi He Zhuo Yang Wei-Hong Lai Li Li Yun Qiao Shu-Lei Chou 《Carbon Energy》 CAS 2021年第2期253-270,共18页
Rechargeable lithium/sodium-sulfur batteries working at room temperature(RT-Li/S,RT-Na/S)appear to be a promising energy storage system in terms of high theoretical energy density,low cost,and abundant resources in na... Rechargeable lithium/sodium-sulfur batteries working at room temperature(RT-Li/S,RT-Na/S)appear to be a promising energy storage system in terms of high theoretical energy density,low cost,and abundant resources in nature.They are,thus,considered as highly attractive candidates for future application in energy storage devices.Nevertheless,the solubility of sulfur species,sluggish kinetics of lithium/sodium sulfide compounds,and high reactivity of metallic anodes render these cells unstable.As a consequence,metal-sulfur batteries present low reversible capacity and quick capacity loss,which hinder their practical application.Investigations to address these issues regarding S cathodes are critical to the increase of their performance and our fundamental understanding of RT-Li/S and RT-Na/S battery systems.Metal-sulfur interactions,recently,have attracted considerable attention,and there have been new insights on pathways to high‐performance RT-Li/Na sulfur batteries,due to the following factors:(1)deliberate construction of metal-sulfur interactions can enable a leap in capacity;(2)metal-sulfur interactions can confine S species,as well as sodium sulfide compounds,to stop shuttle effects;(3)traces of metal species can help to encapsulate a high loading mass of sulfur with high‐cost efficiency;and(4)metal components make electrodes more conductive.In this review,we highlight the latest progress in sulfide immobilization via constructing metal bonding between various metals and S cathodes.Also,we summarize the storage mechanisms of Li/Na as well as the metal-sulfur interaction mechanisms.Furthermore,the current challenges and future remedies in terms of intact confinement and optimization of the electrochemical performance of RT-Li/Na sulfur systems are discussed in this review. 展开更多
关键词 electrochemical mechanism metal-sulfur interactions room temperature Li/Na sulfur batteries S-confinement strategy
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部