The high carrier mobility and long diffusion length of perovskite material have been regarded because of its excellent photovoltaic performance. However, many studies have shown that a diffusion length longer than 1 ...The high carrier mobility and long diffusion length of perovskite material have been regarded because of its excellent photovoltaic performance. However, many studies have shown that a diffusion length longer than 1 μm and higher carrier mobility have no positive effect on the cells' performance. Studies of organic solar cells have demonstrated the existence of an optimal mobility value, while systematic research of the carrier mobility in the PSCs is very rare. To make these questions clear, the effect of carrier mobility on perovskite solar cells' performance is studied in depth in this paper by simulation.Our study shows that the optimal mobility value of the charge transportation layer and absorption layer are influenced by both doping concentration and layer thickness. The appropriate carrier mobility can reduce the carrier recombination rate and enhance the carrier concentration, thus improving the cells' performance. A high efficiency of 27.39% is obtained in the simulated cell with the combination of the optimized parameters in the paper.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.61704147)the Science Fund from the Education Department of Hebei Province,China(Grant No.QN2017150)
文摘The high carrier mobility and long diffusion length of perovskite material have been regarded because of its excellent photovoltaic performance. However, many studies have shown that a diffusion length longer than 1 μm and higher carrier mobility have no positive effect on the cells' performance. Studies of organic solar cells have demonstrated the existence of an optimal mobility value, while systematic research of the carrier mobility in the PSCs is very rare. To make these questions clear, the effect of carrier mobility on perovskite solar cells' performance is studied in depth in this paper by simulation.Our study shows that the optimal mobility value of the charge transportation layer and absorption layer are influenced by both doping concentration and layer thickness. The appropriate carrier mobility can reduce the carrier recombination rate and enhance the carrier concentration, thus improving the cells' performance. A high efficiency of 27.39% is obtained in the simulated cell with the combination of the optimized parameters in the paper.