In this paper, a bundle modification strategy is proposed for nonsmooth convex constrained min- imization problems. As a result, a new feasible point bundle method is presented by applying this strategy. Whenever the ...In this paper, a bundle modification strategy is proposed for nonsmooth convex constrained min- imization problems. As a result, a new feasible point bundle method is presented by applying this strategy. Whenever the stability center is updated, some points in the bundle will be substituted by new ones which have lower objective values and/or constraint values, aiming at getting a better bundle. The method generates feasible serious iterates on which the objective function is monotonically decreasing. Global convergence of the algorithm is established, and some preliminary numerical results show that our method performs better than the standard feasible point bundle method.展开更多
Double-authentication-preventing signature(DAPS) is a novel signature notion proposed at ESORICS2014. The double-authentication-preventing property means that any pair of signatures on two different messages with the ...Double-authentication-preventing signature(DAPS) is a novel signature notion proposed at ESORICS2014. The double-authentication-preventing property means that any pair of signatures on two different messages with the same subject will result in an immediate collapse of the signature system. A few potential applications of DAPS have been discussed by its inventors, such as providing a kind of self-enforcement to discourage certificate authority(CA) from misbehaving in public key infrastructure and offering CA some cryptographic arguments to resist legal coercion. In this study, we focus on some fundamental issues on DAPS. We propose a new definition,which is slightly weakened but still reasonable and strong enough to capture the DAPS concept. We develop the new notion of invertible chameleon hash functions with key exposure. Then we propose a generic DAPS scheme, which is provably secure if the underlying invertible chameleon hash function with key exposure is secure. We instantiate this general construction to obtain the DAPS schemes respectively based on the well-known assumptions of integer factorization, Rivest-Shamir-Adleman(RSA), and computational Diffie-Hellman(CDH). They are more efficient than previous DAPS schemes. Furthermore, unlike previous constructions, the trusted setup condition is not needed by our DAPS schemes based on RSA and CDH.展开更多
In a linear multi-secret sharing scheme with non-threshold structures, several secret values are shared among n participants, and every secret value has a specified access structure. The efficiency of a multi- secret ...In a linear multi-secret sharing scheme with non-threshold structures, several secret values are shared among n participants, and every secret value has a specified access structure. The efficiency of a multi- secret sharing scheme is measured by means of the complexity a and the randomness . Informally, the com- plexity a is the ratio between the maximum of information received by each participant and the minimum of information corresponding to every key. The randomness is the ratio between the amount of information distributed to the set of users U = {1, …, n} and the minimum of information corresponding to every key. In this paper, we discuss a and of any linear multi-secret sharing schemes realized by linear codes with non-threshold structures, and provide two algorithms to make a and to be the minimum, respectively. That is, they are optimal.展开更多
基金Project supported by the National Natural Science Foundation of China(11761013,11771383)Guangxi Natural Science Foundation(2013GXNSFAA019013,2014GXNSFFA118001,2016GXNSFDA380019)the Open Project of Guangxi Colleges and Universities Key Laboratory of Complex System Optimization and Big Data Processing(2016CSOBDP0203)
文摘In this paper, a bundle modification strategy is proposed for nonsmooth convex constrained min- imization problems. As a result, a new feasible point bundle method is presented by applying this strategy. Whenever the stability center is updated, some points in the bundle will be substituted by new ones which have lower objective values and/or constraint values, aiming at getting a better bundle. The method generates feasible serious iterates on which the objective function is monotonically decreasing. Global convergence of the algorithm is established, and some preliminary numerical results show that our method performs better than the standard feasible point bundle method.
基金Project supported by the National Natural Science Foundation of China(Nos.61202475,61133014,and 61472114)the Science and Technology Planning Key Project of Shandong Universities,China(No.J18KA326)the Science and Technology Planning Key Project of Guangdong Province,China(No.2016B010124014)
文摘Double-authentication-preventing signature(DAPS) is a novel signature notion proposed at ESORICS2014. The double-authentication-preventing property means that any pair of signatures on two different messages with the same subject will result in an immediate collapse of the signature system. A few potential applications of DAPS have been discussed by its inventors, such as providing a kind of self-enforcement to discourage certificate authority(CA) from misbehaving in public key infrastructure and offering CA some cryptographic arguments to resist legal coercion. In this study, we focus on some fundamental issues on DAPS. We propose a new definition,which is slightly weakened but still reasonable and strong enough to capture the DAPS concept. We develop the new notion of invertible chameleon hash functions with key exposure. Then we propose a generic DAPS scheme, which is provably secure if the underlying invertible chameleon hash function with key exposure is secure. We instantiate this general construction to obtain the DAPS schemes respectively based on the well-known assumptions of integer factorization, Rivest-Shamir-Adleman(RSA), and computational Diffie-Hellman(CDH). They are more efficient than previous DAPS schemes. Furthermore, unlike previous constructions, the trusted setup condition is not needed by our DAPS schemes based on RSA and CDH.
基金Supported in part by the National Natural Science Foundation of China under Grant No.11271003the National Research Foundation for the Doctoral Program of Higher Education of China under Grant No.20134410110003+3 种基金High Level Talents Project of GuangdongGuangdong Provincial Natural Science Foundation under Grant No.S2012010009950the Project of Department of Education of Guangdong Province under Grant No 2013KJCX0146the Natural Science Foundation of Bureau of Education of Guangzhou under Grant No.2012A004
文摘In a linear multi-secret sharing scheme with non-threshold structures, several secret values are shared among n participants, and every secret value has a specified access structure. The efficiency of a multi- secret sharing scheme is measured by means of the complexity a and the randomness . Informally, the com- plexity a is the ratio between the maximum of information received by each participant and the minimum of information corresponding to every key. The randomness is the ratio between the amount of information distributed to the set of users U = {1, …, n} and the minimum of information corresponding to every key. In this paper, we discuss a and of any linear multi-secret sharing schemes realized by linear codes with non-threshold structures, and provide two algorithms to make a and to be the minimum, respectively. That is, they are optimal.