This study proposed a new way to formulate a low energy super-sulfated cement (SSC) which can be used to produce self-compacting concrete (SCC) with high compressive strength and durability in terms of chloride penetr...This study proposed a new way to formulate a low energy super-sulfated cement (SSC) which can be used to produce self-compacting concrete (SCC) with high compressive strength and durability in terms of chloride penetration resistance. This innovative SSC, different from the traditional SSC, was purely produced with a ternary mixture of three industrial by-products of ground granulated blast furnace slag, low calcium Class F fly ash and circulating fluidized bed combustion (CFBC) fly ash and was denoted as SFC-SSC (super-sulfated cement made by mixture of slag, Class F fly ash and CFBC fly ash). Experimental results showed that the combination of a fixed amount of 15 wt.% of CFBC fly ash with various ratios of Class F fly ash to slag could be used to produce the hardened SCCs with high 28-day compressive strengths (41.8 - 65.6 MPa). Addition of Class F fly ash led to the resulting SCCs with lowered price and preferable engineering properties, and thus it was considered as state-of-the-art method to drive such type of concrete towards sustainable construction materials.展开更多
Bacterial cellulose produced by Acetobacter xylinum has been reacted with propyleneoxide to synthesize hydroxypropyl cellulose (HPC) under different reaction conditions while diluted by toluene. The effects of mass ...Bacterial cellulose produced by Acetobacter xylinum has been reacted with propyleneoxide to synthesize hydroxypropyl cellulose (HPC) under different reaction conditions while diluted by toluene. The effects of mass ratio of bacterial cellulose to propyleneoxide, dilutability of toluene, reaction temperature (T) and time (t) were investigated by series of experiments. The degree of substitution (DS), hydroxypropyl content (A) and yield (η) were compared. The optimized product exhibited cold-water solubility and hot-water gelatinization in aqueous medium. Further study was carried out with FTIR, TGA, XRD, SEM and 13C-NMR for characterization. The water/air contact angle measurement reveals that it is a good hydrophobic material with good mechanical properties.展开更多
文摘This study proposed a new way to formulate a low energy super-sulfated cement (SSC) which can be used to produce self-compacting concrete (SCC) with high compressive strength and durability in terms of chloride penetration resistance. This innovative SSC, different from the traditional SSC, was purely produced with a ternary mixture of three industrial by-products of ground granulated blast furnace slag, low calcium Class F fly ash and circulating fluidized bed combustion (CFBC) fly ash and was denoted as SFC-SSC (super-sulfated cement made by mixture of slag, Class F fly ash and CFBC fly ash). Experimental results showed that the combination of a fixed amount of 15 wt.% of CFBC fly ash with various ratios of Class F fly ash to slag could be used to produce the hardened SCCs with high 28-day compressive strengths (41.8 - 65.6 MPa). Addition of Class F fly ash led to the resulting SCCs with lowered price and preferable engineering properties, and thus it was considered as state-of-the-art method to drive such type of concrete towards sustainable construction materials.
基金financially supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD) and the Jiangsu Provincial Department of Personnel,the National High Technology Research and Development Program of China(863 Program2010AA0500293002)
文摘Bacterial cellulose produced by Acetobacter xylinum has been reacted with propyleneoxide to synthesize hydroxypropyl cellulose (HPC) under different reaction conditions while diluted by toluene. The effects of mass ratio of bacterial cellulose to propyleneoxide, dilutability of toluene, reaction temperature (T) and time (t) were investigated by series of experiments. The degree of substitution (DS), hydroxypropyl content (A) and yield (η) were compared. The optimized product exhibited cold-water solubility and hot-water gelatinization in aqueous medium. Further study was carried out with FTIR, TGA, XRD, SEM and 13C-NMR for characterization. The water/air contact angle measurement reveals that it is a good hydrophobic material with good mechanical properties.