Oil spill modeling is an important technical measure to evaluate the impact of oil spills scientifically. Because of the great uncertainty in its early development, simulation results have not been used as the basis o...Oil spill modeling is an important technical measure to evaluate the impact of oil spills scientifically. Because of the great uncertainty in its early development, simulation results have not been used as the basis of judgments for environmental compensation cases. Despite this, scientific research institutes in many countries, including China, are still devoted to the research and development of oil spill models and their applications in environmental damage assessment, which makes it possible to apply them in the judicial arbitration of damages claims. The relevant regulations on the Chinese compensation fund for oil pollution damage from ships and the judicial authentication of environmental damage have also accredited such kind of modeling applications. In order to enhance the applicability of oil spill model further, it is necessary to expand its damage assessment function, and to test, calibrate and verify the accuracy of the evaluation. To this end, the author adopts the self-developed 3-dimentionaloil spill model—CWCM to simulate the “Tasman Sea” oil spill accident. By comparing the simulation results of tidal current field, wind field, oil spill trajectory with those observed, the model coding and parameter selection are corrected, and it is realized that the simulation being basically consistent with the measured results. In addition, the results of the scale reduced simulation test of oil spill weathering are applied verifying and perfecting the weathering model of CWCM. The technical requirements and process for operational application of oil spill model in judicial arbitration are also put forward. In view of the rapid simulation function, the operational updating program for oil spill weathering model, coupled current model and dynamic update wind field diagnostic model are put forward in order to further improve the operational evaluation function and evaluation efficiency of oil spill model.展开更多
文摘Oil spill modeling is an important technical measure to evaluate the impact of oil spills scientifically. Because of the great uncertainty in its early development, simulation results have not been used as the basis of judgments for environmental compensation cases. Despite this, scientific research institutes in many countries, including China, are still devoted to the research and development of oil spill models and their applications in environmental damage assessment, which makes it possible to apply them in the judicial arbitration of damages claims. The relevant regulations on the Chinese compensation fund for oil pollution damage from ships and the judicial authentication of environmental damage have also accredited such kind of modeling applications. In order to enhance the applicability of oil spill model further, it is necessary to expand its damage assessment function, and to test, calibrate and verify the accuracy of the evaluation. To this end, the author adopts the self-developed 3-dimentionaloil spill model—CWCM to simulate the “Tasman Sea” oil spill accident. By comparing the simulation results of tidal current field, wind field, oil spill trajectory with those observed, the model coding and parameter selection are corrected, and it is realized that the simulation being basically consistent with the measured results. In addition, the results of the scale reduced simulation test of oil spill weathering are applied verifying and perfecting the weathering model of CWCM. The technical requirements and process for operational application of oil spill model in judicial arbitration are also put forward. In view of the rapid simulation function, the operational updating program for oil spill weathering model, coupled current model and dynamic update wind field diagnostic model are put forward in order to further improve the operational evaluation function and evaluation efficiency of oil spill model.