期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Recent Advances of Graphitic Carbon Nitride-Based Structures and Applications in Catalyst, Sensing, Imaging, and LEDs 被引量:10
1
作者 Aiwu wang chundong wang +2 位作者 Li Fu Winnie Wong-Ng Yucheng Lan 《Nano-Micro Letters》 SCIE EI CAS 2017年第4期108-128,共21页
The graphitic carbon nitride(g-C_3N_4) which is a two-dimensional conjugated polymer has drawn broad interdisciplinary attention as a low-cost, metal-free, and visible-light-responsive photocatalyst in the area of env... The graphitic carbon nitride(g-C_3N_4) which is a two-dimensional conjugated polymer has drawn broad interdisciplinary attention as a low-cost, metal-free, and visible-light-responsive photocatalyst in the area of environmental remediation. The g-C_3N_4-based materials have excellent electronic band structures, electron-rich properties, basic surface functionalities, high physicochemical stabilities and are ‘‘earth-abundant.'' This review summarizes the latest progress related to the design and construction of g-C_3N_4-based materials and their applications including catalysis, sensing,imaging, and white-light-emitting diodes. An outlook on possible further developments in g-C_3N_4-based research for emerging properties and applications is also included. 展开更多
关键词 Graphitic carbon nitride(g-C3N4) CATALYSIS SENSING IMAGING LED
下载PDF
Perovskite-type lanthanum ferrite based photocatalysts:Preparation,properties,and applications 被引量:4
2
作者 Muhammad Humayun Habib Ullah +4 位作者 Muhammad Usman Aziz Habibi-Yangjeh Asif Ali Tahir chundong wang Wei Luo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期314-338,I0009,共26页
Clean energy and a sustainable environment are grand challenges that the world is facing which can be addressed by converting solar energy into transportable and storable fuels(chemical fuel).The main scientific and t... Clean energy and a sustainable environment are grand challenges that the world is facing which can be addressed by converting solar energy into transportable and storable fuels(chemical fuel).The main scientific and technological challenges for efficient solar energy conversion,energy storage,and environmental applications are the stability,durability,and performance of low-cost functional materials.Among different nanomaterials,perovskite type LaFeO_(3)has been extensively investigated as a photocatalyst due to its abundance,high stability,compositional and structural fexibility,high electrocatalytic activity,efficient sunlight absorption,and tunable band gap and band edges.Hence,it is urgent to write a comprehensive review to highlight the trend,challenges,and prospects of LaFeO_(3)in the field of photocatalytic solar energy conversion and environment purification.This critical review summarizes the history and basic principles of photocatalysis.Further,it reviews in detail the LaFeO_(3),applications,shortcomings,and activity enhancement strategies including the design of nanostructures,elemental doping,and heterojunctions construction such as Type-I,Type-II,Z-Type,and uncommon heterojunctions.Besides,the optical and electronic properties,charge carriers separation,electron transport phenomenon and alignment of the band gaps in LaFeO_(3)-based heterostructures are comprehensively discussed. 展开更多
关键词 Perovskite-type LaFeO_(3) Solar fuel PHOTOCATALYSIS Doping HETEROSTRUCTURES
下载PDF
Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model 被引量:1
3
作者 chundong wang Ying Wu +1 位作者 Yulin Cao Xinying Xue 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第2期227-231,共5页
The dynamic phase transition properties for ferroelectric nanotube under a spin-1/2 transverse Ising model are studied under the effective field theory(EFT)with correlations.The temperature effects on the pseudo-spin ... The dynamic phase transition properties for ferroelectric nanotube under a spin-1/2 transverse Ising model are studied under the effective field theory(EFT)with correlations.The temperature effects on the pseudo-spin systems are unveiled in three-dimensional(3-D)and two-dimensional(2-D)phase diagrams.Moreover,the dynamic behaviors of exchange interactions on the 3-D and 2-D phase transitions under high temperature are exhibited.The results present that it is hard to obtain pure ferroelectric phase under high temperature;that is,the vibration of orderly pseudo-spins cannot be eliminated completely. 展开更多
关键词 ferroelectric nanotube three-dimensional(3-D)phase diagram Ising model dynamic phase transitions
下载PDF
Spin regulation on(Co,Ni)Se_(2)/C@FeOOH hollow nanocage accelerates water oxidation
4
作者 Yu Gu Xiaolei wang +7 位作者 Muhammad Humayun Linfeng Li Huachuan Sun Xuefei Xu Xinying Xue Aziz Habibi‐Yangjeh Kristiaan Temst chundong wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第3期839-850,共12页
Spin engineering is recognized as a promising strategy that modulates the association between d‐orbital electrons and the oxygenated species,and enhances the catalytic kinetics.However,few efforts have been made to c... Spin engineering is recognized as a promising strategy that modulates the association between d‐orbital electrons and the oxygenated species,and enhances the catalytic kinetics.However,few efforts have been made to clarify whether spin engineering could make a considerable enhancement for electrocatalytic water oxidation.Herein,we report the spin engineering of a nanocage‐structured(Co,Ni)Se_(2)/C@FeOOH,that showed significant oxygen evolution reaction(OER)activity.Magnetization measurement presented that the(Co,Ni)Se_(2)/C@FeOOH sample possesses higher polarization spin number(μb=6.966μB/f.u.)compared with that of the(Co,Ni)Se_(2)/C sample(μb=6.398μB/f.u.),for which the enlarged spin polarization number favors the adsorption and desorption energy of the intermediate oxygenated species,as confirmed by surface valance band spectra.Consequently,the(Co,Ni)Se_(2)/C@FeOOH affords remarkable OER product with a low overpotential of 241 mV at a current of 10 mA cm^(-2) and small Tafel slope of 44 mV dec^(-1) in 1.0 mol/L KOH alkaline solution,significantly surpassing the parent(Co,Ni)Se_(2)/C catalyst.This work will trigger a solid step for the design of highly‐efficient OER electrocatalysts. 展开更多
关键词 Spin engineering d‐Orbital electron Hollownanocage FEOOH Oxygen evolution reaction
下载PDF
An Energy Efficient Routing Protocol for In-Vehicle Wireless Sensor Networks
5
作者 chundong wang Zhentang Zhao +1 位作者 Likun Zhu Honglei Yao 《国际计算机前沿大会会议论文集》 2017年第2期39-40,共2页
In this paper, an advanced distributed energy-efficient clustering (ADEEC) protocol was proposed with the aim of balancing energy consumption across the nodes to achieve longer network lifetime for In-Vehicle Wireless... In this paper, an advanced distributed energy-efficient clustering (ADEEC) protocol was proposed with the aim of balancing energy consumption across the nodes to achieve longer network lifetime for In-Vehicle Wireless Sensor Networks (IVWSNs). The algorithm changes the cluster head selection probability based on residual energy and location distribution of nodes. Then node associate with the cluster head with least communication cost and high residual energy. Simulation results show that ADEEC achieves longer stability period, network lifetime,and throughput than the other classical clustering algorithms. 展开更多
关键词 In-Vehicle WIRELESS Sensor Network ROUTING PROTOCOL CLUSTERING Energy EFFICIENCY
下载PDF
Fe-Ni-F electrocatalyst for enhancing reaction kinetics of water oxidation
6
作者 Yi Zhang Biao wang +6 位作者 Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding chundong wang 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2024年第2期60-65,共6页
Highly active and low-cost oxygen evolution reaction(OER)catalytic electrodes are extremely essential for exploration of green hydrogen via water splitting.Herein,an advanced Fe-Ni-F electrocatalyst is fabricated by a... Highly active and low-cost oxygen evolution reaction(OER)catalytic electrodes are extremely essential for exploration of green hydrogen via water splitting.Herein,an advanced Fe-Ni-F electrocatalyst is fabricated by a facile annealing strategy using ammonium fluoride,of which the structure feature is unveiled by XRD,FESEM,TEM,EDS,BET,and XPS measurements.The as-prepared Fe-Ni-F addresses a low overpotential of 277 mV and a small Tafel slope of 49 mV dec^(-1)at a current density of 10 mA cm^(-2),significantly outperforming other control samples as well as the state-of-the-art RuO_(2).The advanced nature of our Fe-Ni-F catalyst could also be further evidenced from the robust stability in KOH alkaline solution,showing as 5.41%degradation after 24 h continuous working.Upon analysis,it suggests that the decent catalytic activity should be attributed to the formed bimetallic(oxy)hydroxides because of the introduction of fluoride and the synergistic effect of iron and nickel towards oxygen generation.This work represents the potential of Fe-and/or Ni-based fluoride as efficient catalyst for low-energy consumption oxygen generation. 展开更多
关键词 FLUORIDE Oxygen evolution reaction Fe-Ni-F Reaction kinetics
原文传递
Designing single atom catalysts for exceptional electrochemical CO_(2) reduction
7
作者 Muhammad Humayun Mohamed Bououdina +2 位作者 Abbas Khan Sajjad Ali chundong wang 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2024年第1期3-5,共3页
The release of anthropogenic CO_(2)emissions into the atmosphere has significantly accelerated global warming within the past few decades.According to the latest data,it is predicted that the concentration of CO_(2)wi... The release of anthropogenic CO_(2)emissions into the atmosphere has significantly accelerated global warming within the past few decades.According to the latest data,it is predicted that the concentration of CO_(2)will rise to 800 ppm over this century,and could reach 2000 ppm by 2300.Such high level of CO_(2)is expected to result in significant increase in global temperature as well as ocean acidification[1]. 展开更多
关键词 exceptional GLOBAL RELEASE
原文传递
Highly efficient overall urea electrolysis via single-atomically active centers on layered double hydroxide 被引量:5
8
作者 Huachuan Sun Linfeng Li +10 位作者 Hsiao-Chien Chen Delong Duan Muhammad Humayun Yang Qiu Xia Zhang Xiang Ao Ying Wu Yuanjie Pang Kaifu Huo chundong wang Yujie Xiong 《Science Bulletin》 SCIE EI CAS CSCD 2022年第17期1763-1775,共13页
Anodic urea oxidation reaction(UOR)is an intriguing half reaction that can replace oxygen evolution reaction(OER)and work together with hydrogen evolution reaction(HER)toward simultaneous hydrogen fuel generation and ... Anodic urea oxidation reaction(UOR)is an intriguing half reaction that can replace oxygen evolution reaction(OER)and work together with hydrogen evolution reaction(HER)toward simultaneous hydrogen fuel generation and urea-rich wastewater purification;however,it remains a challenge to achieve overall urea electrolysis with high efficiency.Herein,we report a multifunctional electrocatalyst termed as Rh/Ni V-LDH,through integration of nickel-vanadium layered double hydroxide(LDH)with rhodium single-atom catalyst(SAC),to achieve this goal.The electrocatalyst delivers high HER mass activity of0.262 A mg^(-1) and exceptionally high turnover frequency(TOF)of 2.125 s^(-1) at an overpotential of100 m V.Moreover,exceptional activity toward urea oxidation is addressed,which requires a potential of 1.33 V to yield 10 mA cm^(-2),endorsing the potential to surmount the sluggish OER.The splendid catalytic activity is enabled by the synergy of the Ni V-LDH support and the atomically dispersed Rh sites(located on the Ni-V hollow sites)as evidenced both experimentally and theoretically.The selfsupported Rh/Ni V-LDH catalyst serving as the anode and cathode for overall urea electrolysis(1 mol L^(-1) KOH with 0.33 mol L^(-1) urea as electrolyte)only requires a small voltage of 1.47 V to deliver 100 mA cm^(-2) with excellent stability.This work provides important insights into multifunctional SAC design from the perspective of support sites toward overall electrolysis applications. 展开更多
关键词 Single-atomically active centers Layer double hydroxide Hydrogen evolution reaction Overall urea electrolysis High turnover frequency
原文传递
Yolk-shell nanostructural Ni_(2)P/C composites as the high performance electrocatalysts toward urea oxidation 被引量:2
9
作者 Yi Zhang chundong wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第7期2222-2228,共7页
Highly active and low-cost catalytic electrodes for urea oxidation reaction(UOR)are always crucial for exploration of urea fuel cells.Herein,novel york-shell-structural Ni_(2)P/C na nosphere hybrids(Ni_(2)P/C-YS)are r... Highly active and low-cost catalytic electrodes for urea oxidation reaction(UOR)are always crucial for exploration of urea fuel cells.Herein,novel york-shell-structural Ni_(2)P/C na nosphere hybrids(Ni_(2)P/C-YS)are rationally constructed via a hydrothermal method and subsequent phosphidation treatment under different temperature ranging from 250℃to 450℃for UOR applications.In the in-situ constructed hollow york-shell structure,the coupling of conductive carbon materials and active Ni_(2)P allows numerous interfaces facilitating the electron transfer and thereby accelerating the catalytic kinetics.The results demonstrate that Ni_(2)P/C-YS-350 nanocomposite can boost the UOR process with a low potential of 1.366 V vs.RHE at a current density of 50 mA/cm^(2) in alkaline electrolyte and afford the superior durability with negligible potential decay after 23 h.This study presents that the carbon coated Ni_(2)P hybrid with the optimized crystallinities and hollow york-shell configurations can be a promising candidate for application in urea fuel cells. 展开更多
关键词 Ni_(2)P/C Yolk-shell ELECTROCATALYSTS Urea oxidation Nanosphere
原文传递
Metal-Organic Frameworks Offering Tunable Binary Active Sites toward HighlyEfficient Urea Oxidation Electrolysis
10
作者 Xuefei Xu Qingming Deng +10 位作者 Hsiao-Chien Chen Muhammad Humayun Delong Duan Xia Zhang Huachuan Sun Xiang Ao Xinying Xue Anton Nikiforov Kaifu Huo chundong wang Yujie Xiong 《Research》 EI CAS CSCD 2022年第4期309-320,共12页
Electrocatalytic urea oxidation reaction(UOR)is regarded as an effective yet challenging approach for the degradation of urea in wastewater into harmless N2 and CO_(2).To overcome the sluggish kinetics,catalytically a... Electrocatalytic urea oxidation reaction(UOR)is regarded as an effective yet challenging approach for the degradation of urea in wastewater into harmless N2 and CO_(2).To overcome the sluggish kinetics,catalytically active sites should be rationally designed to maneuver the multiple key steps of intermediate adsorption and desorption.Herein,we demonstrate that metal-organic frameworks(MOFs)can provide an ideal platform for tailoring binary active sites to facilitate the rate-determining steps,achieving remarkable electrocatalytic activity toward UOR.Specifically,the MOF(namely,NiMn_(0.14)-BDC)based on Ni/Mn sites and terephthalic acid(BDC)ligands exhibits a low voltage of 1.317 V to deliver a current density of 10 mA cm^(-2).As a result,a high turnover frequency(TOF)of 0.15 s^(-1) is achieved at a voltage of 1.4 V,which enables a urea degradation rate of 81.87%in 0.33 M urea solution.The combination of experimental characterization with theoretical calculation reveals that the Ni and Mn sites play synergistic roles in maneuvering the evolution of urea molecules and key reaction intermediates during the UOR,while the binary Ni/Mn sites in MOF offer the tunability for electronic structure and d-band center impacting on the intermediate evolution.This work provides important insights into active site design by leveraging MOF platform and represents a solid step toward highly efficient UOR with MOF-based electrocatalysts. 展开更多
关键词 solution STEPS Highly
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部