期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Discrete element modelling of railway ballast performance considering particle shape and rolling resistance 被引量:4
1
作者 Yunlong Guo chunfa zhao +3 位作者 Valeri Markine Can Shi Guoqing Jing Wanming Zhai 《Railway Engineering Science》 2020年第4期382-407,共26页
To simulate ballast performance accurately and efficiently,the input in discrete element models should be carefully selected,including the contact model and applied particle shape.To study the effects of the contact m... To simulate ballast performance accurately and efficiently,the input in discrete element models should be carefully selected,including the contact model and applied particle shape.To study the effects of the contact model and applied particle shape on the ballast performance(shear strength and deformation),the direct shear test(DST)model and the large-scale process simulation test(LPST)model were developed on the basis of two types of contact models,namely the rolling resistance linear(RRL)model and the linear contact(LC)model.Particle shapes are differentiated by clumps.A clump is a sphere assembly for one ballast particle.The results show that compared with the typical LC model,the RRL method is more efficient and realistic to predict shear strength results of ballast assemblies in DSTs.In addition,the RRL contact model can also provide accurate vertical and lateral ballast deformation under the cyclic loading in LPSTs. 展开更多
关键词 Discrete element method Ballast performance Boundary condition Rolling resistance Direct shear test Lateral displacement
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部