Icosahedral quasicrystals display irregular shape if it is embedded in bulk material. If it has free surface, it has well-defined facets, reflecting its unique 5-, 3-, and 2-fold rotational symmetries. In this study, ...Icosahedral quasicrystals display irregular shape if it is embedded in bulk material. If it has free surface, it has well-defined facets, reflecting its unique 5-, 3-, and 2-fold rotational symmetries. In this study, an Al-Cu-Fe alloy with nominal composition of Al65Cu20Fe15 was prepared by arc melting and the microstructure was studied by using Scanning Electron Microscope, Energy Dispersive X-ray Spectroscopy, and Electron Back Scattering Diffraction (EBSD). On the surface of λ crystalline phase, an extra layer is found. EBSD from this layer revealed 5-, 3-, and 2-fold rotational symmetries, demonstrating the icosahedral quasicrystalline structure. Further, it has been found that the icosahedral quasicrystalline extra layer and the λ substrate have orientation relationship revealed by the coincidences of Kikuchi bands and poles on the EBSD patterns. This report is important to future studies regarding the formation of icosahedral quasicrystalline phase and thin film preparation related to icosahedral quasicrystalline phase.展开更多
文摘Icosahedral quasicrystals display irregular shape if it is embedded in bulk material. If it has free surface, it has well-defined facets, reflecting its unique 5-, 3-, and 2-fold rotational symmetries. In this study, an Al-Cu-Fe alloy with nominal composition of Al65Cu20Fe15 was prepared by arc melting and the microstructure was studied by using Scanning Electron Microscope, Energy Dispersive X-ray Spectroscopy, and Electron Back Scattering Diffraction (EBSD). On the surface of λ crystalline phase, an extra layer is found. EBSD from this layer revealed 5-, 3-, and 2-fold rotational symmetries, demonstrating the icosahedral quasicrystalline structure. Further, it has been found that the icosahedral quasicrystalline extra layer and the λ substrate have orientation relationship revealed by the coincidences of Kikuchi bands and poles on the EBSD patterns. This report is important to future studies regarding the formation of icosahedral quasicrystalline phase and thin film preparation related to icosahedral quasicrystalline phase.