Quantum key distribution(QKD)is a physical layer encryption technique that enables two distant parties to exchange secure keys with information-theoretic security.In the last two decades,QKD has transitioned from labo...Quantum key distribution(QKD)is a physical layer encryption technique that enables two distant parties to exchange secure keys with information-theoretic security.In the last two decades,QKD has transitioned from laboratory research to real-world applications,including multi-user quantum access networks(QANs).This network structure allows users to share a single-photon detector at a network node through time-division multiplexing,thereby significantly reducing the network cost.However,current QAN implementations require additional hardware for auxiliary tasks such as time synchronization.To address this issue,we propose a cost-efficient QAN that uses qubit-based synchronization.In this approach,the transmitted qubits facilitate time synchronization,eliminating the need for additional synchronization hardware.We tested our scheme by implementing a network for two users and successfully achieved average secure key rates of 53.84 kbps and 71.90 kbps for each user over a 50-km commercial fiber spool.In addition,we investigated the capacity of the access network under cross-talk and loss conditions.The simulation results demonstrate that this scheme can support a QAN with 64 users with key rates up to 1070 bps.Our work provides a feasible and cost-effective way to implement a multi-user QKD network,further promoting the widespread application of QKD.展开更多
Integrated photonics provides a promising platform for quantum key distribution(QKD)system in terms of miniaturization,robustness,and scalability.Tremendous QKD works based on integrated photonics have been reported.N...Integrated photonics provides a promising platform for quantum key distribution(QKD)system in terms of miniaturization,robustness,and scalability.Tremendous QKD works based on integrated photonics have been reported.Nonetheless,most current chip-based QKD implementations require additional off-chip hardware to demodulate quantum states or perform auxiliary tasks such as time synchronization and polarization basis tracking.Here,we report a demonstration of resource-efficient chip-based BB84 QKD with a silicon-based encoder and a decoder.In our scheme,the time synchronization and polarization compensation are implemented relying on the preparation and measurement of the quantum states generated by on-chip devices;thus,we need no additional hardware.The experimental tests show that our scheme is highly stable with a low intrinsic quantum bit error rate of 0.50%±0.02%in a 6 h continuous run.Furthermore,over a commercial fiber channel up to150 km,the system enables the realization of secure key distribution at a rate of 866 bit/s.Our demonstration paves the way for a low-cost,wafer-scale manufactured QKD system.展开更多
Quantum secure direct communication(QSDC) has been demonstrated in both fiber-based and free-space channels using attenuated lasers. Decoy-state QSDC by exploiting four decoy states has been proposed to address the pr...Quantum secure direct communication(QSDC) has been demonstrated in both fiber-based and free-space channels using attenuated lasers. Decoy-state QSDC by exploiting four decoy states has been proposed to address the problem of photon-numbersplitting attacks caused by the use of attenuated lasers. In this study, we present an analysis of the practical aspects of decoy-state QSDC. First, we design a two-decoy-state protocol that only requires two decoy states, thereby significantly reducing experimental complexity. Second, we successfully perform full parameter optimization for a real-life QSDC system by introducing a genetic algorithm. Our simulation results show that the two-decoy-state protocol could be the best choice for developing a practical QSDC system. Furthermore, full optimization is crucial for a high-performance QSDC system. Our work serves as a major step toward the further development of practical decoy-state QSDC systems.展开更多
Quantum secure direct communication(QSDC)that allows people to directly transmit confidential information through insecure channels is an important branch of quantum communication.The widespread adoption of the QSDC d...Quantum secure direct communication(QSDC)that allows people to directly transmit confidential information through insecure channels is an important branch of quantum communication.The widespread adoption of the QSDC demands the development of simple and stable systems.However,most of the existent QSDC systems involve a complex self-alignment process at the initial stage and additional hardware to compensate environmental disturbance.In this study,we present a fiber-based QSDC system without active polarization compensation.Our system comprises a stable transmitter and a novel Sagnac-Mach-Zehnder interferometer for security detection.This robust system simplifies the self-alignment and is immune to environmental disturbance.The robustness of the system was theoretically and experimentally verified,and low bit error rates in a 12 min continuous operation with an active polarization scrambler were attained.In addition,we performed a proof-of-principle QSDC demonstration,and a secrecy capacity of 3.43 kbps over a 5 km fiber with a detection bit error rate of 0.85%±0.07%and a quantum bit error rate of 0.42%±0.05%were achieved.Experimental results confirm the viability of the proposed QSDC system for practical applications.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.62171144,and 11905065)the Guangxi Science Foundation(Grant Nos.2021GXNSFAA220011,and 2021AC19384)+1 种基金the Open Fund of Institute of Pervasive Computing(IPOC)(Beijing University of Posts and Telecommunications)(Grant No.IPOC2021A02)the Innovation Project of Guangxi Graduate Education(Grant No.YCSW2022040)。
文摘Quantum key distribution(QKD)is a physical layer encryption technique that enables two distant parties to exchange secure keys with information-theoretic security.In the last two decades,QKD has transitioned from laboratory research to real-world applications,including multi-user quantum access networks(QANs).This network structure allows users to share a single-photon detector at a network node through time-division multiplexing,thereby significantly reducing the network cost.However,current QAN implementations require additional hardware for auxiliary tasks such as time synchronization.To address this issue,we propose a cost-efficient QAN that uses qubit-based synchronization.In this approach,the transmitted qubits facilitate time synchronization,eliminating the need for additional synchronization hardware.We tested our scheme by implementing a network for two users and successfully achieved average secure key rates of 53.84 kbps and 71.90 kbps for each user over a 50-km commercial fiber spool.In addition,we investigated the capacity of the access network under cross-talk and loss conditions.The simulation results demonstrate that this scheme can support a QAN with 64 users with key rates up to 1070 bps.Our work provides a feasible and cost-effective way to implement a multi-user QKD network,further promoting the widespread application of QKD.
基金National Natural Science Foundation of China(62171144,62031024)Guangxi Science Foundation(2021GXNSFAA220011)Open Fund of IPOC(BUPT)(IPOC2021A02)。
文摘Integrated photonics provides a promising platform for quantum key distribution(QKD)system in terms of miniaturization,robustness,and scalability.Tremendous QKD works based on integrated photonics have been reported.Nonetheless,most current chip-based QKD implementations require additional off-chip hardware to demodulate quantum states or perform auxiliary tasks such as time synchronization and polarization basis tracking.Here,we report a demonstration of resource-efficient chip-based BB84 QKD with a silicon-based encoder and a decoder.In our scheme,the time synchronization and polarization compensation are implemented relying on the preparation and measurement of the quantum states generated by on-chip devices;thus,we need no additional hardware.The experimental tests show that our scheme is highly stable with a low intrinsic quantum bit error rate of 0.50%±0.02%in a 6 h continuous run.Furthermore,over a commercial fiber channel up to150 km,the system enables the realization of secure key distribution at a rate of 866 bit/s.Our demonstration paves the way for a low-cost,wafer-scale manufactured QKD system.
基金supported by the National Natural Science Foundation of China(Grant Nos.62171144,62031024,and 11865004)the Guangxi Science Foundation(Grant No.2017GXNSFBA198231)。
文摘Quantum secure direct communication(QSDC) has been demonstrated in both fiber-based and free-space channels using attenuated lasers. Decoy-state QSDC by exploiting four decoy states has been proposed to address the problem of photon-numbersplitting attacks caused by the use of attenuated lasers. In this study, we present an analysis of the practical aspects of decoy-state QSDC. First, we design a two-decoy-state protocol that only requires two decoy states, thereby significantly reducing experimental complexity. Second, we successfully perform full parameter optimization for a real-life QSDC system by introducing a genetic algorithm. Our simulation results show that the two-decoy-state protocol could be the best choice for developing a practical QSDC system. Furthermore, full optimization is crucial for a high-performance QSDC system. Our work serves as a major step toward the further development of practical decoy-state QSDC systems.
基金supported by the National Natural Science Foundation of China(Grant Nos.62171144,and 11905065)Guangxi Science Foundation(Grant Nos.2021GXNSFAA220011,and 2021AC19384)+1 种基金Open Fund of IPOC(BUPT)(Grant No.IPOC2021A02)Innovation Project of Guangxi Graduate Education(Grant No.YCSW2022040)。
文摘Quantum secure direct communication(QSDC)that allows people to directly transmit confidential information through insecure channels is an important branch of quantum communication.The widespread adoption of the QSDC demands the development of simple and stable systems.However,most of the existent QSDC systems involve a complex self-alignment process at the initial stage and additional hardware to compensate environmental disturbance.In this study,we present a fiber-based QSDC system without active polarization compensation.Our system comprises a stable transmitter and a novel Sagnac-Mach-Zehnder interferometer for security detection.This robust system simplifies the self-alignment and is immune to environmental disturbance.The robustness of the system was theoretically and experimentally verified,and low bit error rates in a 12 min continuous operation with an active polarization scrambler were attained.In addition,we performed a proof-of-principle QSDC demonstration,and a secrecy capacity of 3.43 kbps over a 5 km fiber with a detection bit error rate of 0.85%±0.07%and a quantum bit error rate of 0.42%±0.05%were achieved.Experimental results confirm the viability of the proposed QSDC system for practical applications.