Degradable biomaterials have emerged as a promising type of medical materials because of their unique advantages of biocompatibility,biodegradability and biosafety.Owing to their bioabsorbable and biocompatible proper...Degradable biomaterials have emerged as a promising type of medical materials because of their unique advantages of biocompatibility,biodegradability and biosafety.Owing to their bioabsorbable and biocompatible properties,magnesium-based biomaterials are considered as ideal degradable medical implants.However,the rapid corrosion of magnesium-based materials not only limits their clinical application but also necessitates a more specific biological evaluation system and biosafety standard.In this study,extracts of pure Mg and its calcium alloy were prepared using different media based on ISO 10993:12;the Mg^2+ concentration and osmolality of each extract were measured.The biocompatibility was investigated using the MTT assay and xCELLigence real-time cell analysis(RTCA).Cytotoxicity tests were conducted with L929,MG-63 and human umbilical vein endothelial cell lines.The results of the RTCA highly matched with those of the MTT assay and revealed the different dynamic modes of the cytotoxic process,which are related to the differences in the tested cell lines,Mg-based materials and dilution rates of extracts.This study provides an insight on the biocompatibility of biodegradable materials from the perspective of cytotoxic dynamics and suggests the applicability of RTCA for the cytotoxic evaluation of degradable biomaterials.展开更多
Systemic toxicity caused by repeated exposure to both polar and nonpolar leachables of di(2-ethylhexyl)-1,2-cyclohexane plasticized polyvinyl chloride(PVC)was evaluated with dual routes of parenteral administration me...Systemic toxicity caused by repeated exposure to both polar and nonpolar leachables of di(2-ethylhexyl)-1,2-cyclohexane plasticized polyvinyl chloride(PVC)was evaluated with dual routes of parenteral administration method on rats in the study.Experimental group and control group were designed by researchers.Tail intravenous injection with 0.9%sodium chloride injection extracts and intraperitoneal injection with corn oil extracts were conducted to the experimental rats while tail intravenous injection with 0.9%sodium chloride Injection and intraperitoneal injection with corn oil were conducted to the control rats.After 14 days,blood specimens were collected for clinical pathology(hematology and clinical chemistry)analysis.Selected organs were weighed and a histopathological examination was conducted.As a result,compared with the control animals,there were no toxicity-related changes on the parameters above.The results show that the rats do not show obvious systemic toxicity reaction caused by repeated exposure with dual routes of parenteral administration method on rats after administration with both polar and nonpolar exacts of di(2-ethylhexyl)-1,2-cyclohexane plasticized PVC simultaneously up for 14 days.展开更多
基金supported by the National Key Research and Development Project of China(NO.2016YFC1103205).
文摘Degradable biomaterials have emerged as a promising type of medical materials because of their unique advantages of biocompatibility,biodegradability and biosafety.Owing to their bioabsorbable and biocompatible properties,magnesium-based biomaterials are considered as ideal degradable medical implants.However,the rapid corrosion of magnesium-based materials not only limits their clinical application but also necessitates a more specific biological evaluation system and biosafety standard.In this study,extracts of pure Mg and its calcium alloy were prepared using different media based on ISO 10993:12;the Mg^2+ concentration and osmolality of each extract were measured.The biocompatibility was investigated using the MTT assay and xCELLigence real-time cell analysis(RTCA).Cytotoxicity tests were conducted with L929,MG-63 and human umbilical vein endothelial cell lines.The results of the RTCA highly matched with those of the MTT assay and revealed the different dynamic modes of the cytotoxic process,which are related to the differences in the tested cell lines,Mg-based materials and dilution rates of extracts.This study provides an insight on the biocompatibility of biodegradable materials from the perspective of cytotoxic dynamics and suggests the applicability of RTCA for the cytotoxic evaluation of degradable biomaterials.
基金The authors are grateful to the financial support of National Key Research and Development Program,No.2016YFC1103205.
文摘Systemic toxicity caused by repeated exposure to both polar and nonpolar leachables of di(2-ethylhexyl)-1,2-cyclohexane plasticized polyvinyl chloride(PVC)was evaluated with dual routes of parenteral administration method on rats in the study.Experimental group and control group were designed by researchers.Tail intravenous injection with 0.9%sodium chloride injection extracts and intraperitoneal injection with corn oil extracts were conducted to the experimental rats while tail intravenous injection with 0.9%sodium chloride Injection and intraperitoneal injection with corn oil were conducted to the control rats.After 14 days,blood specimens were collected for clinical pathology(hematology and clinical chemistry)analysis.Selected organs were weighed and a histopathological examination was conducted.As a result,compared with the control animals,there were no toxicity-related changes on the parameters above.The results show that the rats do not show obvious systemic toxicity reaction caused by repeated exposure with dual routes of parenteral administration method on rats after administration with both polar and nonpolar exacts of di(2-ethylhexyl)-1,2-cyclohexane plasticized PVC simultaneously up for 14 days.