期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Designing a high Si reduced activation ferritic/martensitic steel for nuclear power generation by using Calphad method 被引量:3
1
作者 Chao Liu Quanqiang Shi +4 位作者 Wei Yan chunguang shen Ke Yang Yiyin Shan Mingchun Zhao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第3期266-274,共9页
A high Si reduced activation ferritic/martensitic(RAFM) steel for nuclear structure application is successfully designed by using Calphad method. The main designed chemical composition is C 0.18–0.22%, Cr10.0–10.5%,... A high Si reduced activation ferritic/martensitic(RAFM) steel for nuclear structure application is successfully designed by using Calphad method. The main designed chemical composition is C 0.18–0.22%, Cr10.0–10.5%, W 1.0–1.5%, Si 1.0–1.3%, V+Ta 0.30–0.45%, and Fe in balance. High Si design brings excellent corrosion resistance, while low activation is advantageous in the nuclear waste processing. The experimental results indicate that the newly designed high Si RAFM steel had full martensitic structure and uniformly distributed fine second phase particles, and exhibited excellent mechanical properties and corrosion resistance. Compared to the P91 steel, this new RAFM steel designed by Calphad method is expected to be a promising candidate used in nuclear power generation, which also provides a new and effective approach to the development of RAFM steel for nuclear application. 展开更多
关键词 Ferritic/martensitic steel ALLOY design CALPHAD method REDUCED ACTIVATION HIGH silicon
原文传递
Discovery of marageing steels: machine learning vs. physical metallurgical modelling 被引量:1
2
作者 chunguang shen Chenchong Wang +4 位作者 Pedro E.J.Rivera-Díaz-del-Castillo Dake Xu Qian Zhang Chi Zhang Wei Xu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第28期258-268,共11页
Physical metallurgical(PM)and data-driven approaches can be independently applied to alloy design.Steel technology is a field of physical metallurgy around which some of the most comprehensive understanding has been d... Physical metallurgical(PM)and data-driven approaches can be independently applied to alloy design.Steel technology is a field of physical metallurgy around which some of the most comprehensive understanding has been developed,with vast models on the relationship between composition,processing,microstructure and properties.They have been applied to the design of new steel alloys in the pursuit of grades of improved properties.With the advent of rapid computing and low-cost data storage,a wealth of data has become available to a suite of modelling techniques referred to as machine learning(ML).ML is being emergingly applied in materials discovery while it requires data mining with its adoption being limited by insufficient high-quality datasets,often leading to unrealistic materials design predictions outside the boundaries of the intended properties.It is therefore required to appraise the strength and weaknesses of PM and ML approach,to assess the real design power of each towards designing novel steel grades.This work incorporates models and datasets from well-established literature on marageing steels.Combining genetic algorithm(GA)with PM models to optimise the parameters adopted for each dataset to maximise the prediction accuracy of PM models,and the results were compared with ML models.The results indicate that PM approaches provide a clearer picture of the overall composition-microstructureproperties relationship but are highly sensitive to the alloy system and hence lack on exploration ability of new domains.ML conversely provides little explicit physical insight whilst yielding a stronger prediction accuracy for large-scale data.Hybrid PM/ML approaches provide solutions maximising accuracy,while leading to a clearer physical picture and the desired properties. 展开更多
关键词 Machine learning Physical metallurgy Small sample problem Marageing steel
原文传递
A generic high-throughput microstructure classification and quantification method for regular SEM images of complex steel microstructures combining EBSD labeling and deep learning
3
作者 chunguang shen Chenchong Wang +3 位作者 Minghao Huang Ning Xu Sybrand van der Zwaag Wei Xu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第34期191-204,共14页
We present an electron backscattered diffraction(EBSD)-trained deep learning(DL)method integrating traditional material characterization informatics and artificial intelligence for a more accurate classification and q... We present an electron backscattered diffraction(EBSD)-trained deep learning(DL)method integrating traditional material characterization informatics and artificial intelligence for a more accurate classification and quantification of complex microstructures using only regular scanning electron microscope(SEM)images.In this method,EBSD analysis is applied to produce accurate ground truth data for guiding the DL model training.An U-Net architecture is used to establish the correlation between SEM input images and EBSD ground truth data using only small experimental datasets.The proposed method is successfully applied to two engineering steels with complex microstructures,i.e.,a dual-phase(DP)steel and a quenching and partitioning(Q&P)steel,to segment different phases and quantify phase content and grain size.Alternatively,once properly trained the method can also produce quasi-EBSD maps by inputting regular SEM images.The good generality of the trained models is demonstrated by using DP and Q&P steels not associated with the model training.Finally,the method is applied to SEM images with various states,i.e.,different imaging modes,image qualities and magnifications,demonstrating its good robustness and strong application ability.Furthermore,the visualization of feature maps during the segmenting process is utilised to explain the mechanism of this method’s good performance. 展开更多
关键词 Microstructure quantification Deep learning Electron backscatter diffraction Small sample problem
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部