Background: Exogenous melatonin could induce cashmere growth. However, induced growth of cashmere fleece by melatonin implants cannot be combined with the typical growth, resulting in earlier shedding followed by ano...Background: Exogenous melatonin could induce cashmere growth. However, induced growth of cashmere fleece by melatonin implants cannot be combined with the typical growth, resulting in earlier shedding followed by another cycle of cashmere growth. To address this issue, we examine the effects on the cashmere yield, fibre characteristics, and the growth and reproductive performance of cashmere goats of planned administration of melatonin. Methods: Eighteen half-sib, female goats were assigned to two treatments (n = 9) including a control and a treatment where melatonin (2 mg/kg BW) was implanted at the end of April and end of June. Cashmere growth and shedding were observed for approximately ] year following implantation. Fibre samples were collected monthly to determine cumulative cashmere length. Initiation and cessation dates for cashmere growth as well as the rate of cashmere growth were calculated. Cashmere yield, weight gain of dam, kidding date, litter size, and birth weight were also recorded. Results: Melatonin implantation increased cashmere yield by 34.5 % (control 553.7 g vs. melatonin 745.0 g; P〈 0.01), cashmere length by 21.3 % (control 95.2 mm vs. melatonin 115.4 mm; P 〈 0.01), and decreased fibre diameter by 4.4 % (control 14.6 pm vs. melatonin 14.0 IJm; P 〈 0.03). In melatonin-treated goats, the average initiation date was earlier than in control goats (May 18, 2013 vs. July 2, 20]3; P〈 0.01) but there was a similar cessation date (March 22, 2014 vs. March 27, 2014). Consequently, the duration of cashmere growth was longer in melatonin-treated goats than in control goats (307 vs.270 days; P 〈 0.01). The final BW, average daily gain, kidding date, litter size, and birth weight were not influenced by melatonin implantation. Conclusions: These data indicate that melatonin implantation (2 mg/kg BW) on two occasions (late April and June) increased cashmere yield by combining the induced growth of cashmere fleece with the typical growth and decreased the fibre diameter without changing dam growth rate or reproductive performance.展开更多
Organic solar cells(OSCs)show a promising commercialization prospect with their power conversion efficiencies(PCEs)exceeding 18%[1−6].Among various types of OSCs,all-polymer solar cells(all-PSCs)with a physical blend ...Organic solar cells(OSCs)show a promising commercialization prospect with their power conversion efficiencies(PCEs)exceeding 18%[1−6].Among various types of OSCs,all-polymer solar cells(all-PSCs)with a physical blend of p-and n-type polymer as the active layer to harvest solar irradiation attract growing attention due to their unique advantages like excellent morphological stability,and mechanical durability[7].展开更多
Polythiophenes(PTs)are prospective polymer donors for large-scale manufacturing and industrialization owing to their simple structures and low synthetic cost.However,the fabrication of PT solar cells depends on highly...Polythiophenes(PTs)are prospective polymer donors for large-scale manufacturing and industrialization owing to their simple structures and low synthetic cost.However,the fabrication of PT solar cells depends on highly toxic chlorinated solvents,and less research has been done on the use of more environmentally friendly non-halogenated solvents.Herein,highly efficient PT solar cells based on top-performance polythiophene,P5TCN-F25,processed from a non-halogenated solvent are reported by delicate aggregation control.A power conversion efficiency of up to 15.68%was achieved by depositing the active layer from a hot o-xylene solution,which is the record efficiency of non-halogenated processed PT solar cells up to date.The appropriate solution temperature is beneficial to the formation of ordered polymer stacking and desirable phase separation size,which thereby contributes to enhanced charge transfer efficiency,more balanced hole/electron mobility,and reduced trap-assisted recombination.These results provide valuable implications for improving the efficiency of PT solar cells via environmentallyfriendly processing.展开更多
Comprehensive Summary The regioregularity induced by the isomers of the end-groups has been widely recognized as a key factor that determines the photovoltaic properties of polymerized small molecular acceptors(PSMAs)...Comprehensive Summary The regioregularity induced by the isomers of the end-groups has been widely recognized as a key factor that determines the photovoltaic properties of polymerized small molecular acceptors(PSMAs)in all-polymer solar cells(all-PSCs).However,the influence of regioregularity on the photovoltaic properties of non-fused PSMAs has not been explored yet.In this contribution,two regioregular non-fused PSMAs,PFBTz-T-γand PFBTz-T-δ,were synthesized for the first time by using the monomers with isomeric pure end-groups.Compared with PFBTz-T-δ,PFBTz-T-γhas more compact and more ordered packing in solid state,which results in a more red-shifted optical absorption and a higher electron mobility.More remarkably,PFBTz-T-γand PFBTz-T-δexhibited huge difference in photovoltaic performance in all-PSCs,which offered the power conversion efficiencies(PCEs)of 9.72%and 0.52%,respectively.Further studies have unveiled that the higher PCE of PFBTz-T-γis due to more efficient exciton dissociation,higher and more balanced electron/hole mobility,and less charge recombination as a result of favorable morphology of the blend film.This work demonstrates that the development of regioregular non-fused PSMAs by tuning the polymerization sites is an effective strategy for obtaining high-efficiency all-PSCs.展开更多
Organic solar cells have attracted academic and industrial interests due to the advantages like lightweight,flexibility and roll-to-roll fabrication.Nowadays,18%power conversion efficiency has been achieved in the sta...Organic solar cells have attracted academic and industrial interests due to the advantages like lightweight,flexibility and roll-to-roll fabrication.Nowadays,18%power conversion efficiency has been achieved in the state-of-the-art organic solar cells.The recent rapid progress in organic solar cells relies on the continuously emerging new materials and device fabrication technologies,and the deep understanding on film morphology,molecular packing and device physics.Donor and acceptor materials are the key materials for organic solar cells since they determine the device performance.The past 25 years have witnessed an odyssey in developing high-performance donors and acceptors.In this review,we focus on those star materials and milestone work,and introduce the molecular structure evolution of key materials.These key materials include homopolymer donors,D-A copolymer donors,A-D-A small molecular donors,fullerene acceptors and nonfullerene acceptors.At last,we outlook the challenges and very important directions in key materials development.展开更多
Organic solar cells(OSCs)based on bulk heterojunction,consisting of a polymer donor and a small molecular acceptor(SMA)represent a promising photovoltaic technology due to their prospect in producing large-area module...Organic solar cells(OSCs)based on bulk heterojunction,consisting of a polymer donor and a small molecular acceptor(SMA)represent a promising photovoltaic technology due to their prospect in producing large-area modules via low-cost roll-to-roll processing[1].This field has experienced three stages according to the type of electron acceptors.Prior to 2015,the electron acceptors were predominated by fullerene derivatives.展开更多
Organic solar cells(OSCs)is a promising renewable energy technology as their prospect in producing large-area photovoltaic modules via low-cost roll-to-roll processing and their widespread application including photov...Organic solar cells(OSCs)is a promising renewable energy technology as their prospect in producing large-area photovoltaic modules via low-cost roll-to-roll processing and their widespread application including photovoltaic farms,building integration,and portable electronics,etc.[1].The key component of an OSC is its photoactive layer,which is a bulk-heterojunction blend of an electron donor and an electron acceptor[2].The electron donors are p-type semi-conducting conjugated polymers or small molecules,and the electron acceptors were predominated by fullerene derivatives in OSC history.展开更多
Organic solar cells(OSCs)have made fast advance with prominent power conversion efficiencies(PCEs)achieved in non-fullerene OSCs in recent years[1].Among various types of OSCs,allpolymer solar cells(APSCs)consisting o...Organic solar cells(OSCs)have made fast advance with prominent power conversion efficiencies(PCEs)achieved in non-fullerene OSCs in recent years[1].Among various types of OSCs,allpolymer solar cells(APSCs)consisting of a polymer donor and a polymer acceptor are promising power sources for portable and wearable electronics due to their intrinsic advantages in device stability and mechanical flexibility[2].展开更多
Solution-processed organic solar cells(OSCs)have attracted considerable attention due to their unique advantages like flexibility,semitransparency,and fabrication of large-area modules via low-cost roll-to-roll proces...Solution-processed organic solar cells(OSCs)have attracted considerable attention due to their unique advantages like flexibility,semitransparency,and fabrication of large-area modules via low-cost roll-to-roll processing[1].The core of an OSC is the bulk-heterojunction photoactive layer,which consists of electron donors and electron acceptors.The leading electron donors are ptype conjugated polymers,and the electron acceptors are typically n-type conjugated small molecules[2].展开更多
We report all-polymer solar cells(All-PSCs) with record-high power conversion efficiency(PCE) through tuning the molecular weights of the polymer donor(PBDB-T) to form optimal active layer morphology. By combining the...We report all-polymer solar cells(All-PSCs) with record-high power conversion efficiency(PCE) through tuning the molecular weights of the polymer donor(PBDB-T) to form optimal active layer morphology. By combining the polymer donors with a newly reported polymer acceptor(PJ1), an unprecedented high PCE of 15.4% and fill factor over 75% were achieved for the AllPSCs with the medium molecular weight polymer donor(PBDB-TMW), which is the highest value for All-PSCs reported so far.Detailed morphology investigation revealed that the proper phase separation in the PBDB-TMW:PJ1 blend should account for the superior device performance as PBDB-TMW exhibits appropriate miscibility with the polymer acceptor PJ1. These results demonstrated that the device performance of All-PSCs could be fully comparable to that of small molecular acceptor-based PSCs. The formation of optimized morphology via precise control of molecular weights of polymer donors and acceptors is crucial to achieve this goal.展开更多
Single-molecule electrical and spin switches have been one of the main research focuses in molecular electronics and spintronics because they may form the most important elements for the future information technology,...Single-molecule electrical and spin switches have been one of the main research focuses in molecular electronics and spintronics because they may form the most important elements for the future information technology,thus attracting great attention in the scientific community and witnessing significant progresses benefiting from the combination of physics,chemistry,materials,and engineering.The key issue of constructing single-molecule switches is the development of stimulus-responsive systems that provide bistable or multiple states.In this review,we summarize the recent advances of this field in terms of the external stimulus that induces the switching.A variety of external stimuli,such as light,electric field,magnetic field,mechanical force,and chemical stimulus,have been successfully employed to activate the reversible switching in single-molecule junctions by manipulating molecular structures,conformations,electronic states,and spin states.As a burgeoning field,we finally put forward the challenges in molecular electronics and spintronics that need to be solved,which will initiate intense research.展开更多
The employment of an intrinsic quinoidal building block,benzodipyrrolidone(BDP),on constructing conjugated polymers(PBDP-2F and PBDP-2CN)with high electron mobility and unipolar transport characteristic in polyethylen...The employment of an intrinsic quinoidal building block,benzodipyrrolidone(BDP),on constructing conjugated polymers(PBDP-2F and PBDP-2CN)with high electron mobility and unipolar transport characteristic in polyethylenimine ethoxylated(PEIE)modified organic field-effect transistors(OFETs)is reported.The intrinsic quinoidal characteristic and excellent coplanarity of BDP can lower the lowest unoccupied molecular orbital(LUMO)levels and improve ordered interchain packing of the resulting polymers in solid states,which are favorable for electron-injection and transport.By using PEIE as the interlayer to block the hole injection,unipolar n-type transport characteristics with high electron mobility of 0.58 and 1.01 cm^(2) V^(-1)s^(-1)were achieved by the OFETs based on PBDP-2F and PBDP-2CN,respectively.More importantly,the extracted mobilities are highly reliable with the reliability factor of above 80%.To the best of our knowledge,PBDP-2CN is the very first quinoid-based conjugated polymer with reliable electron mobility exceeding 1 cm^(2) V^(-1)s^(-1).This work represents a significant step in exploring intrinsic quinoidal CPs for application in n-channel OFETs and logic complementary circuits.展开更多
A series of novel wide bandgap small molecules(IFT-ECA, IFT-M, IFT-TH and IFT-IC) based on the A-D-A structure with indenofluorene core, thiophene bridge, and different electron-deficient end-capping groups, were synt...A series of novel wide bandgap small molecules(IFT-ECA, IFT-M, IFT-TH and IFT-IC) based on the A-D-A structure with indenofluorene core, thiophene bridge, and different electron-deficient end-capping groups, were synthesized and used as non-fullerene acceptors in organic solar cells. The influences of end-capping groups on the device performance were studied.The four materials exhibited different physical and chemical properties due to the variation of end-capping groups, which further affect the exciton dissociation, charge transport, morphology of the bulk-heterojunction films and device performance. Among them, IFT-IC-based device delivered the best power conversion efficiency of 7.16% due to proper nano-scale phase separation morphology and high electron mobility, while the devices based on the other acceptors achieved lower device performance(4.14% for IFT-TH, <1% for IFT-ECA and IFT-M). Our results indicate the importance of choosing suitable electron-withdrawing groups to construct high-performance non-fullerene acceptors based on A-D-A motif.展开更多
The Institute of Polymer Optoelectronic Materials & Devices, South China University of Technology, Guangzhou, in close collaboration with the Department of Electrical and Electronic Engineering, The University of ...The Institute of Polymer Optoelectronic Materials & Devices, South China University of Technology, Guangzhou, in close collaboration with the Department of Electrical and Electronic Engineering, The University of Hong Kong, has shown that the band gap and展开更多
A new polymer donor based on 3,3′-difluoro-2,2′-bithiophene(2F2T) and difluorobenzoxadiazole(ffBX), named 2F2T-ffBX, is designed and synthesized. The organic solar cell(OSC) based on 2F2T-ffBX donor and [6,6]-phenyl...A new polymer donor based on 3,3′-difluoro-2,2′-bithiophene(2F2T) and difluorobenzoxadiazole(ffBX), named 2F2T-ffBX, is designed and synthesized. The organic solar cell(OSC) based on 2F2T-ffBX donor and [6,6]-phenyl-C60-butyl acid methyl ester([60]PCBM) acceptor exhibits a high efficiency of 7.3% with a high open-circuit voltage(Voc) of 1.03 V. When blended with perylenediimide-based acceptor(PDI6), the corresponding OSC shows a higher Voc of 1.19 V with a low energy loss of 0.50 e V but a much lower efficiency of 2.0%. The detailed analyses including charge generation, transport, recombination properties, and morphology were performed to understand the performance of corresponding devices.展开更多
Four new 2D donor–acceptor conjugated polymers were designed and synthesized.These new polymers comprised fluorenealt-triphenylamine or carbazole-alt-triphenylamine as the backbones,and pendants with 2,1,3-benzothiad...Four new 2D donor–acceptor conjugated polymers were designed and synthesized.These new polymers comprised fluorenealt-triphenylamine or carbazole-alt-triphenylamine as the backbones,and pendants with 2,1,3-benzothiadiazole(BT)or naphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole(NT)in a triphenylamine unit as the side groups.By changing the acceptor BT for a stronger electron-withdrawing unit of NT moiety in the side chain,the energy levels,absorption spectra,band gaps,and charge-transport abilities of the resultant polymers could be effectively tuned.Bulk heterojunction solar cells with these polymers as the electron donors and(6,6)-phenyl-C71-butyric acid methyl ester as the electron acceptor exhibited high open-circuit voltage(more than 0.8 e V).The power conversion efficiency can be improved from 1.37%to 3.52%by replacing the BT with an NT moiety,which indicates that introducing NT as the side-chain building block can be an effective strategy to construct efficient 2D conjugated polymers for PSCs.展开更多
A series of novel acceptor-pended conjugated polymers featuring a newly developed carbazole-derived unit are designed and synthesized. The relationships between chemical structure and optoelectronic properties of the ...A series of novel acceptor-pended conjugated polymers featuring a newly developed carbazole-derived unit are designed and synthesized. The relationships between chemical structure and optoelectronic properties of the polymers are systematically in-vestigated. The control of UV-Vis absorption spectra and energy levels in resulting polymers are achieved by introducing suitable pended acceptor units. The photovoltaic properties of the resulting polymers are evaluated by blending the polymers with (6,6)-phenyl-CTFbutyric acid methyl ester. The resulting solar cells exhibit moderate performances with high open-circuit voltage. Charge transport properties and morphology were investigated to understand the performance of corresponding solar cells.展开更多
Indoor photovoltaics have attracted increasing attention as power sources for low power consumption wireless electronics and the rapidly-growing Internet of Things(Io T). Highly tunable optical absorption, large absor...Indoor photovoltaics have attracted increasing attention as power sources for low power consumption wireless electronics and the rapidly-growing Internet of Things(Io T). Highly tunable optical absorption, large absorption coefficients, and low leakage currents make organic photovoltaics(OPVs) promising for indoor application [1]. Recently, a few OPVs have realized over 20% power conversion efficiencies(PCEs) under indoor light illumination.展开更多
基金supported by the Program for New Century Excellent Talents in University(No.NCET-11-0489)the Key Program of the National Natural Science Foundation of China(No.31470119)
文摘Background: Exogenous melatonin could induce cashmere growth. However, induced growth of cashmere fleece by melatonin implants cannot be combined with the typical growth, resulting in earlier shedding followed by another cycle of cashmere growth. To address this issue, we examine the effects on the cashmere yield, fibre characteristics, and the growth and reproductive performance of cashmere goats of planned administration of melatonin. Methods: Eighteen half-sib, female goats were assigned to two treatments (n = 9) including a control and a treatment where melatonin (2 mg/kg BW) was implanted at the end of April and end of June. Cashmere growth and shedding were observed for approximately ] year following implantation. Fibre samples were collected monthly to determine cumulative cashmere length. Initiation and cessation dates for cashmere growth as well as the rate of cashmere growth were calculated. Cashmere yield, weight gain of dam, kidding date, litter size, and birth weight were also recorded. Results: Melatonin implantation increased cashmere yield by 34.5 % (control 553.7 g vs. melatonin 745.0 g; P〈 0.01), cashmere length by 21.3 % (control 95.2 mm vs. melatonin 115.4 mm; P 〈 0.01), and decreased fibre diameter by 4.4 % (control 14.6 pm vs. melatonin 14.0 IJm; P 〈 0.03). In melatonin-treated goats, the average initiation date was earlier than in control goats (May 18, 2013 vs. July 2, 20]3; P〈 0.01) but there was a similar cessation date (March 22, 2014 vs. March 27, 2014). Consequently, the duration of cashmere growth was longer in melatonin-treated goats than in control goats (307 vs.270 days; P 〈 0.01). The final BW, average daily gain, kidding date, litter size, and birth weight were not influenced by melatonin implantation. Conclusions: These data indicate that melatonin implantation (2 mg/kg BW) on two occasions (late April and June) increased cashmere yield by combining the induced growth of cashmere fleece with the typical growth and decreased the fibre diameter without changing dam growth rate or reproductive performance.
基金financially supported by the National Key Research and Development Program of China(2017YFA0206600)Guangdong Innovative and Entrepreneurial Research Team Program(2019ZT08L075)+2 种基金Open Funds of State Key Laboratory of Fine Chemicals(KF1901)the Fundamental Research Funds for the Central Universities(D2190310)the National Natural Science Foundation of China(51773045,21772030,51922032,21961160720)for financial support。
文摘Organic solar cells(OSCs)show a promising commercialization prospect with their power conversion efficiencies(PCEs)exceeding 18%[1−6].Among various types of OSCs,all-polymer solar cells(all-PSCs)with a physical blend of p-and n-type polymer as the active layer to harvest solar irradiation attract growing attention due to their unique advantages like excellent morphological stability,and mechanical durability[7].
基金supported by the Guangdong Basic and Applied Basic Research Foundation(2022B1515120008)the Guangdong Innovative and Entrepreneurial Research Team Program(2019ZT08L075)+1 种基金the National Natural Science Foundation of China(22275058,U20A6002)supported by the National Research Foundation of the Republic of Korea(NRF)grant funded by the Republic of Korea Government(MSIP)(2021R1A2C3004202)。
文摘Polythiophenes(PTs)are prospective polymer donors for large-scale manufacturing and industrialization owing to their simple structures and low synthetic cost.However,the fabrication of PT solar cells depends on highly toxic chlorinated solvents,and less research has been done on the use of more environmentally friendly non-halogenated solvents.Herein,highly efficient PT solar cells based on top-performance polythiophene,P5TCN-F25,processed from a non-halogenated solvent are reported by delicate aggregation control.A power conversion efficiency of up to 15.68%was achieved by depositing the active layer from a hot o-xylene solution,which is the record efficiency of non-halogenated processed PT solar cells up to date.The appropriate solution temperature is beneficial to the formation of ordered polymer stacking and desirable phase separation size,which thereby contributes to enhanced charge transfer efficiency,more balanced hole/electron mobility,and reduced trap-assisted recombination.These results provide valuable implications for improving the efficiency of PT solar cells via environmentallyfriendly processing.
基金supported by the Ministry of Science and Technology of China(2019YFA0705900)the National Natural Science Foundation of China(21875072,22275058,and U20A6002)Guangdong Innovative and Entrepreneurial Research Team Program(2019ZT08L075).
文摘Comprehensive Summary The regioregularity induced by the isomers of the end-groups has been widely recognized as a key factor that determines the photovoltaic properties of polymerized small molecular acceptors(PSMAs)in all-polymer solar cells(all-PSCs).However,the influence of regioregularity on the photovoltaic properties of non-fused PSMAs has not been explored yet.In this contribution,two regioregular non-fused PSMAs,PFBTz-T-γand PFBTz-T-δ,were synthesized for the first time by using the monomers with isomeric pure end-groups.Compared with PFBTz-T-δ,PFBTz-T-γhas more compact and more ordered packing in solid state,which results in a more red-shifted optical absorption and a higher electron mobility.More remarkably,PFBTz-T-γand PFBTz-T-δexhibited huge difference in photovoltaic performance in all-PSCs,which offered the power conversion efficiencies(PCEs)of 9.72%and 0.52%,respectively.Further studies have unveiled that the higher PCE of PFBTz-T-γis due to more efficient exciton dissociation,higher and more balanced electron/hole mobility,and less charge recombination as a result of favorable morphology of the blend film.This work demonstrates that the development of regioregular non-fused PSMAs by tuning the polymerization sites is an effective strategy for obtaining high-efficiency all-PSCs.
基金supported by the National Natural Science Foundation of China(51773045,21772030,51922032,21961160720)。
文摘Organic solar cells have attracted academic and industrial interests due to the advantages like lightweight,flexibility and roll-to-roll fabrication.Nowadays,18%power conversion efficiency has been achieved in the state-of-the-art organic solar cells.The recent rapid progress in organic solar cells relies on the continuously emerging new materials and device fabrication technologies,and the deep understanding on film morphology,molecular packing and device physics.Donor and acceptor materials are the key materials for organic solar cells since they determine the device performance.The past 25 years have witnessed an odyssey in developing high-performance donors and acceptors.In this review,we focus on those star materials and milestone work,and introduce the molecular structure evolution of key materials.These key materials include homopolymer donors,D-A copolymer donors,A-D-A small molecular donors,fullerene acceptors and nonfullerene acceptors.At last,we outlook the challenges and very important directions in key materials development.
基金This work was supported by the National Key Research and Development Program of China(2017YFA0206600 and 2019YFA0705900)the National Natural Science Foundation of China(21875072,51773045,21772030,51922032,and 21961160720).
文摘Organic solar cells(OSCs)based on bulk heterojunction,consisting of a polymer donor and a small molecular acceptor(SMA)represent a promising photovoltaic technology due to their prospect in producing large-area modules via low-cost roll-to-roll processing[1].This field has experienced three stages according to the type of electron acceptors.Prior to 2015,the electron acceptors were predominated by fullerene derivatives.
基金supported by the National Key Research and Development Program of China(2017YFA0206600,2019YFA0705900)National Natural Science Foundation of China(21875072,51773045,21772030,51922032,and 21961160720)。
文摘Organic solar cells(OSCs)is a promising renewable energy technology as their prospect in producing large-area photovoltaic modules via low-cost roll-to-roll processing and their widespread application including photovoltaic farms,building integration,and portable electronics,etc.[1].The key component of an OSC is its photoactive layer,which is a bulk-heterojunction blend of an electron donor and an electron acceptor[2].The electron donors are p-type semi-conducting conjugated polymers or small molecules,and the electron acceptors were predominated by fullerene derivatives in OSC history.
基金the National Key Research and Development Program of China (2017YFA0206600 and 2019YFA0705900)the National Natural Science Foundation of China (21875072, 51773045, 21772030, 51922032 and 21961160720)。
文摘Organic solar cells(OSCs)have made fast advance with prominent power conversion efficiencies(PCEs)achieved in non-fullerene OSCs in recent years[1].Among various types of OSCs,allpolymer solar cells(APSCs)consisting of a polymer donor and a polymer acceptor are promising power sources for portable and wearable electronics due to their intrinsic advantages in device stability and mechanical flexibility[2].
基金supported by the National Key Research and Development Program of China(2017YFA0206600,2019YFA0705900)the National Natural Science Foundation of China(21875072,51773045,21772030,51922032,and 21961160720)。
文摘Solution-processed organic solar cells(OSCs)have attracted considerable attention due to their unique advantages like flexibility,semitransparency,and fabrication of large-area modules via low-cost roll-to-roll processing[1].The core of an OSC is the bulk-heterojunction photoactive layer,which consists of electron donors and electron acceptors.The leading electron donors are ptype conjugated polymers,and the electron acceptors are typically n-type conjugated small molecules[2].
基金supported by the Ministry of Science and Technology of China(2019YFA0705900)the National Natural Science Foundation of China(21875072)+2 种基金the Fundamental Research Funds for the Central Universities(South China University of Technology,D2190310)Guangdong Innovative and Entrepreneurial Research Team Program(2019ZT08L075)the Open Funds of State Key Laboratory of Fine Chemicals(KF1901)。
文摘We report all-polymer solar cells(All-PSCs) with record-high power conversion efficiency(PCE) through tuning the molecular weights of the polymer donor(PBDB-T) to form optimal active layer morphology. By combining the polymer donors with a newly reported polymer acceptor(PJ1), an unprecedented high PCE of 15.4% and fill factor over 75% were achieved for the AllPSCs with the medium molecular weight polymer donor(PBDB-TMW), which is the highest value for All-PSCs reported so far.Detailed morphology investigation revealed that the proper phase separation in the PBDB-TMW:PJ1 blend should account for the superior device performance as PBDB-TMW exhibits appropriate miscibility with the polymer acceptor PJ1. These results demonstrated that the device performance of All-PSCs could be fully comparable to that of small molecular acceptor-based PSCs. The formation of optimized morphology via precise control of molecular weights of polymer donors and acceptors is crucial to achieve this goal.
基金National Key R&D Program of China,Grant/Award Number:2017YFA0204901National Natural Science Foundation of China,Grant/Award Numbers:21727806,21933001Natural Science Foundation of Beijing,Grant/Award Number:Z181100004418003。
文摘Single-molecule electrical and spin switches have been one of the main research focuses in molecular electronics and spintronics because they may form the most important elements for the future information technology,thus attracting great attention in the scientific community and witnessing significant progresses benefiting from the combination of physics,chemistry,materials,and engineering.The key issue of constructing single-molecule switches is the development of stimulus-responsive systems that provide bistable or multiple states.In this review,we summarize the recent advances of this field in terms of the external stimulus that induces the switching.A variety of external stimuli,such as light,electric field,magnetic field,mechanical force,and chemical stimulus,have been successfully employed to activate the reversible switching in single-molecule junctions by manipulating molecular structures,conformations,electronic states,and spin states.As a burgeoning field,we finally put forward the challenges in molecular electronics and spintronics that need to be solved,which will initiate intense research.
基金supported by the Ministry of Science and Technology of China(2017YFA0206600,2019YFA0705900)the National Natural Science Foundation of China(21875072,21774093)+2 种基金the Fundamental Research Funds for Central Universities(South China University of Technology,D2190310)Guangdong Innovative and Entrepreneurial Research Team Program(2019ZT08L075)the Open Funds of State Key Laboratory of Fine Chemicals(KF1901)。
文摘The employment of an intrinsic quinoidal building block,benzodipyrrolidone(BDP),on constructing conjugated polymers(PBDP-2F and PBDP-2CN)with high electron mobility and unipolar transport characteristic in polyethylenimine ethoxylated(PEIE)modified organic field-effect transistors(OFETs)is reported.The intrinsic quinoidal characteristic and excellent coplanarity of BDP can lower the lowest unoccupied molecular orbital(LUMO)levels and improve ordered interchain packing of the resulting polymers in solid states,which are favorable for electron-injection and transport.By using PEIE as the interlayer to block the hole injection,unipolar n-type transport characteristics with high electron mobility of 0.58 and 1.01 cm^(2) V^(-1)s^(-1)were achieved by the OFETs based on PBDP-2F and PBDP-2CN,respectively.More importantly,the extracted mobilities are highly reliable with the reliability factor of above 80%.To the best of our knowledge,PBDP-2CN is the very first quinoid-based conjugated polymer with reliable electron mobility exceeding 1 cm^(2) V^(-1)s^(-1).This work represents a significant step in exploring intrinsic quinoidal CPs for application in n-channel OFETs and logic complementary circuits.
基金supported by the Ministry of Science and Technology(2014CB643501)the National Natural Science Foundation of China(21520102006,21634004,21490573)the Guangdong Natural Science Foundation(S2012030006232)
文摘A series of novel wide bandgap small molecules(IFT-ECA, IFT-M, IFT-TH and IFT-IC) based on the A-D-A structure with indenofluorene core, thiophene bridge, and different electron-deficient end-capping groups, were synthesized and used as non-fullerene acceptors in organic solar cells. The influences of end-capping groups on the device performance were studied.The four materials exhibited different physical and chemical properties due to the variation of end-capping groups, which further affect the exciton dissociation, charge transport, morphology of the bulk-heterojunction films and device performance. Among them, IFT-IC-based device delivered the best power conversion efficiency of 7.16% due to proper nano-scale phase separation morphology and high electron mobility, while the devices based on the other acceptors achieved lower device performance(4.14% for IFT-TH, <1% for IFT-ECA and IFT-M). Our results indicate the importance of choosing suitable electron-withdrawing groups to construct high-performance non-fullerene acceptors based on A-D-A motif.
基金supported by the National Natural Science Foundation of China (50990065, 5101003, 51073058 and 20904011)the National Key Basic Research Program of China (2009CB623601)+1 种基金the UGC grant (400897) of The University of Hong KongHong Kong Research Grants Council (HKU#712108 and HKU#712010)
文摘The Institute of Polymer Optoelectronic Materials & Devices, South China University of Technology, Guangzhou, in close collaboration with the Department of Electrical and Electronic Engineering, The University of Hong Kong, has shown that the band gap and
基金supported by the Ministry of Science and Technology (2017YFA0206600, 2014CB643501)the National Natural Science Foundation of China (21875072, 21520102006, 91633301)the Recruitment Program of Global Youth Experts of China
文摘A new polymer donor based on 3,3′-difluoro-2,2′-bithiophene(2F2T) and difluorobenzoxadiazole(ffBX), named 2F2T-ffBX, is designed and synthesized. The organic solar cell(OSC) based on 2F2T-ffBX donor and [6,6]-phenyl-C60-butyl acid methyl ester([60]PCBM) acceptor exhibits a high efficiency of 7.3% with a high open-circuit voltage(Voc) of 1.03 V. When blended with perylenediimide-based acceptor(PDI6), the corresponding OSC shows a higher Voc of 1.19 V with a low energy loss of 0.50 e V but a much lower efficiency of 2.0%. The detailed analyses including charge generation, transport, recombination properties, and morphology were performed to understand the performance of corresponding devices.
基金financially supported by the National Basic Research Program of China(2014CB643501)the National Natural Science Foundation of China(21125419 and 51361165301)+1 种基金the Guangdong Natural Science Foundation(S2012030006232)the Research Fund for the Doctoral Program of Higher Education of China(20120172140001)
文摘Four new 2D donor–acceptor conjugated polymers were designed and synthesized.These new polymers comprised fluorenealt-triphenylamine or carbazole-alt-triphenylamine as the backbones,and pendants with 2,1,3-benzothiadiazole(BT)or naphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole(NT)in a triphenylamine unit as the side groups.By changing the acceptor BT for a stronger electron-withdrawing unit of NT moiety in the side chain,the energy levels,absorption spectra,band gaps,and charge-transport abilities of the resultant polymers could be effectively tuned.Bulk heterojunction solar cells with these polymers as the electron donors and(6,6)-phenyl-C71-butyric acid methyl ester as the electron acceptor exhibited high open-circuit voltage(more than 0.8 e V).The power conversion efficiency can be improved from 1.37%to 3.52%by replacing the BT with an NT moiety,which indicates that introducing NT as the side-chain building block can be an effective strategy to construct efficient 2D conjugated polymers for PSCs.
基金supported by the Ministry of Science and Technology(2014CB643501)the National Natural Science Foundation of China(21520102006,21490573,51361165301)the Guangdong Natural Science Foundation(S2012030006232)
文摘A series of novel acceptor-pended conjugated polymers featuring a newly developed carbazole-derived unit are designed and synthesized. The relationships between chemical structure and optoelectronic properties of the polymers are systematically in-vestigated. The control of UV-Vis absorption spectra and energy levels in resulting polymers are achieved by introducing suitable pended acceptor units. The photovoltaic properties of the resulting polymers are evaluated by blending the polymers with (6,6)-phenyl-CTFbutyric acid methyl ester. The resulting solar cells exhibit moderate performances with high open-circuit voltage. Charge transport properties and morphology were investigated to understand the performance of corresponding solar cells.
基金supported by the National Key Research and Development Program of China (2017YFA0206600, and 2019YFA0705900)the National Natural Science Foundation of China (21875072, 51773045, 21772030, 51922032, and 21961160720)。
文摘Indoor photovoltaics have attracted increasing attention as power sources for low power consumption wireless electronics and the rapidly-growing Internet of Things(Io T). Highly tunable optical absorption, large absorption coefficients, and low leakage currents make organic photovoltaics(OPVs) promising for indoor application [1]. Recently, a few OPVs have realized over 20% power conversion efficiencies(PCEs) under indoor light illumination.