实验室安全建设是实验室高效有序运行的保障。大学生作为基础教学实验室运行的主力,他们的安全素养直接影响着实验室的安全状况。在实验教学过程中构建注重安全素养培养的“实验室管理人员、教师、学生——全员、全时三位一体实验教学...实验室安全建设是实验室高效有序运行的保障。大学生作为基础教学实验室运行的主力,他们的安全素养直接影响着实验室的安全状况。在实验教学过程中构建注重安全素养培养的“实验室管理人员、教师、学生——全员、全时三位一体实验教学模式”,并在分析化学实验教学中进行了具体实践。新的实验教学模式加强了实验室管理员、教师与学生之间的沟通,通过COOP与7S实验教学方案,使学生在学习的同时沉浸式参与实验环境维护及建设、根植安全理念。利用Partial Eta Squared(η2)检验和多元Logistic回归模型分析发现,实验过程操作规范性和操作区有序度对学生安全素养影响明显。实践证明,该模式有助于培养学生良好的实验习惯和安全素养,增加学生在实验室中的责任感和获得感,实现管教增质、教学相长、安全铸魂的教学目标,使实验室人员可以把安全时刻掌握在自己手中,实验室安全运行水平有效提升。展开更多
A series of erbium ion-doped TiO2(Er^3+-TiO2) films were prepared by a sol-gel dip/spin coating method, and the effect of the dosage of erbium ion(0-2.0 mol%), the films coating layers(1-5 layers), and calcinat...A series of erbium ion-doped TiO2(Er^3+-TiO2) films were prepared by a sol-gel dip/spin coating method, and the effect of the dosage of erbium ion(0-2.0 mol%), the films coating layers(1-5 layers), and calcination temperature(400-700 ℃) on the film structure and photocatalytic activity were investigated in detail. The films were characterized by means of X-ray diffraction(XRD), scanning electron microscopy(SEM), thermal analysis(TG-DTG) and UV-Vis diffusive reflectance spectra(DRS). The results showed that the films were composed of anatase, and no other TiO2 phases(rutile and brookite). With the increase of the erbium ion dosage, the crystal size decreased. Erbium ion doping could enhance the thermal stability of TiO2 and inhibit the increase of the crystallite size. Meanwhile doping of erbium ions gave rise to three typical absorption peaks within the range of visible light(400-700 nm), locating at 490, 523, and 654 nm, attributed to the transition of 4 f electrons. The higher calcination temperature led to higher crystallinity and bigger crystal grains. The photocatalytic performance of the films was evaluated by degradation of methyl orange solution under simulated solar light. The highest quality film we prepared was with 4 layers, 1.0 mol% dosage of erbium ion, and the calcination temperature of 500 ℃. With this film,the degradation percentage of 7.8 mg/L methyl orange solution was up to 53.3% under simulated solar light after 6 h photoreaction.展开更多
文摘实验室安全建设是实验室高效有序运行的保障。大学生作为基础教学实验室运行的主力,他们的安全素养直接影响着实验室的安全状况。在实验教学过程中构建注重安全素养培养的“实验室管理人员、教师、学生——全员、全时三位一体实验教学模式”,并在分析化学实验教学中进行了具体实践。新的实验教学模式加强了实验室管理员、教师与学生之间的沟通,通过COOP与7S实验教学方案,使学生在学习的同时沉浸式参与实验环境维护及建设、根植安全理念。利用Partial Eta Squared(η2)检验和多元Logistic回归模型分析发现,实验过程操作规范性和操作区有序度对学生安全素养影响明显。实践证明,该模式有助于培养学生良好的实验习惯和安全素养,增加学生在实验室中的责任感和获得感,实现管教增质、教学相长、安全铸魂的教学目标,使实验室人员可以把安全时刻掌握在自己手中,实验室安全运行水平有效提升。
文摘A series of erbium ion-doped TiO2(Er^3+-TiO2) films were prepared by a sol-gel dip/spin coating method, and the effect of the dosage of erbium ion(0-2.0 mol%), the films coating layers(1-5 layers), and calcination temperature(400-700 ℃) on the film structure and photocatalytic activity were investigated in detail. The films were characterized by means of X-ray diffraction(XRD), scanning electron microscopy(SEM), thermal analysis(TG-DTG) and UV-Vis diffusive reflectance spectra(DRS). The results showed that the films were composed of anatase, and no other TiO2 phases(rutile and brookite). With the increase of the erbium ion dosage, the crystal size decreased. Erbium ion doping could enhance the thermal stability of TiO2 and inhibit the increase of the crystallite size. Meanwhile doping of erbium ions gave rise to three typical absorption peaks within the range of visible light(400-700 nm), locating at 490, 523, and 654 nm, attributed to the transition of 4 f electrons. The higher calcination temperature led to higher crystallinity and bigger crystal grains. The photocatalytic performance of the films was evaluated by degradation of methyl orange solution under simulated solar light. The highest quality film we prepared was with 4 layers, 1.0 mol% dosage of erbium ion, and the calcination temperature of 500 ℃. With this film,the degradation percentage of 7.8 mg/L methyl orange solution was up to 53.3% under simulated solar light after 6 h photoreaction.