In this paper,battery aging diversity among independent cells was studied in terms of available capacity degradation.During the aging process of LiFePO_(4)batteries,the phenomenon of aging diversity can be observed.Wh...In this paper,battery aging diversity among independent cells was studied in terms of available capacity degradation.During the aging process of LiFePO_(4)batteries,the phenomenon of aging diversity can be observed.When batteries with same specification were charged and discharged repeatedly under the same working conditions,the available capacity of different cell decreased at different rates along the cycle number.In this study,accelerated aging tests were carried out on multiple new LiFePO_(4)battery samples of different brands.Experimental results show that under the same working conditions,the actual available capacity of all cells decreased as the number of aging cycle increased,but an obvious aging diversity was observed even among different cells of same brand with same specification.This aging diversity was described and analysed in detail,and the common aging features of different cells beneath this aging diversity was explored.Considering this aging diversity,a probability density concept was adopted to estimate battery’s state of health(SOH).With this method,a relationship between battery SOH and its aging feature parameter was established,and a dynamic sliding window optimization technique was designed to ensure the optimal quality of aging feature extraction.Finally,the accuracy of this SOH estimation method was verified by random test.展开更多
Flaxseed cake contains cyanogenic glucosides, which can be metabolized into hydrocyanic acid in an animal's body, leading to asphyxia poisoning in cells. Beta-glucosidase is highly efficient in degrading cyanogeni...Flaxseed cake contains cyanogenic glucosides, which can be metabolized into hydrocyanic acid in an animal's body, leading to asphyxia poisoning in cells. Beta-glucosidase is highly efficient in degrading cyanogenic glucosides. The Cattle may have b-glucosidase-producing strains in the intestinal tract after eating small amounts of flaxseed cake for a long time. This study aimed to isolate of a strain from cow dung that produces b-glucosidase with high activity and can significantly reduce the amount of cyanogenic glucosides. We used cow dung as the microflora source and an esculin agar as the selective medium. After screening with 0.05% esculin and 0.01% ferric citrate, we isolated 5 strains producing high amounts of b-glucosidase. In vitro flaxseed cake fermentation was fermented by these 5 strains, in which the strain M-2 exerted the best effect(P < 0.05). The strain M-2 was identified as Lichtheimia ramosa and used as the fermentation strain to optimize the fermentation parameters by a single factor analysis and orthogonal experimental design. The optimum condition was as follows: inoculum size3%, water content 60%, time 144 h, and temperature 32℃. Under this condition, the removal rate of cyanogenic glucosides reached 89%, and crude protein increment reached 44%. These results provided a theoretical basis for the removal of cyanogenic glucosides in flaxseed and the comprehensive utilization of flaxseed cake.展开更多
In three-phase four-wire systems, unbalanced loads can cause grid currents to be unbalanced, and this may cause the neutral point potential on the grid side to shift. The neutral point potential shift will worsen the ...In three-phase four-wire systems, unbalanced loads can cause grid currents to be unbalanced, and this may cause the neutral point potential on the grid side to shift. The neutral point potential shift will worsen the control precision as well as the performance of the threephase four-wire unified power quality conditioner(UPQC),and it also leads to unbalanced three-phase output voltage,even causing damage to electric equipment. To deal with unbalanced loads, this paper proposes a matching-ratio compensation algorithm(MCA) for the fundamental active component of load currents, and by employing this MCA,balanced three-phase grid currents can be realized under 100% unbalanced loads. The steady-state fluctuation and the transient drop of the DC bus voltage can also be restrained. This paper establishes the mathematical model of the UPQC, analyzes the mechanism of the DC bus voltage fluctuations, and elaborates the interaction between unbalanced grid currents and DC bus voltage fluctuations;two control strategies of UPQC under three-phase stationary coordinate based on the MCA are given, and finally, the feasibility and effectiveness of the proposed control strategy are verified by experiment results.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.51877187)the Key Program of University Technology Plan of Hebei Province(Grant No.ZD2017081).
文摘In this paper,battery aging diversity among independent cells was studied in terms of available capacity degradation.During the aging process of LiFePO_(4)batteries,the phenomenon of aging diversity can be observed.When batteries with same specification were charged and discharged repeatedly under the same working conditions,the available capacity of different cell decreased at different rates along the cycle number.In this study,accelerated aging tests were carried out on multiple new LiFePO_(4)battery samples of different brands.Experimental results show that under the same working conditions,the actual available capacity of all cells decreased as the number of aging cycle increased,but an obvious aging diversity was observed even among different cells of same brand with same specification.This aging diversity was described and analysed in detail,and the common aging features of different cells beneath this aging diversity was explored.Considering this aging diversity,a probability density concept was adopted to estimate battery’s state of health(SOH).With this method,a relationship between battery SOH and its aging feature parameter was established,and a dynamic sliding window optimization technique was designed to ensure the optimal quality of aging feature extraction.Finally,the accuracy of this SOH estimation method was verified by random test.
基金supported by Jiangsu Science and Technology Major Project (BA2016036)Lanzhou Science and Technology Funds (2015-3-81)Gansu Science and Technology Major Project (17ZD2FA009)
文摘Flaxseed cake contains cyanogenic glucosides, which can be metabolized into hydrocyanic acid in an animal's body, leading to asphyxia poisoning in cells. Beta-glucosidase is highly efficient in degrading cyanogenic glucosides. The Cattle may have b-glucosidase-producing strains in the intestinal tract after eating small amounts of flaxseed cake for a long time. This study aimed to isolate of a strain from cow dung that produces b-glucosidase with high activity and can significantly reduce the amount of cyanogenic glucosides. We used cow dung as the microflora source and an esculin agar as the selective medium. After screening with 0.05% esculin and 0.01% ferric citrate, we isolated 5 strains producing high amounts of b-glucosidase. In vitro flaxseed cake fermentation was fermented by these 5 strains, in which the strain M-2 exerted the best effect(P < 0.05). The strain M-2 was identified as Lichtheimia ramosa and used as the fermentation strain to optimize the fermentation parameters by a single factor analysis and orthogonal experimental design. The optimum condition was as follows: inoculum size3%, water content 60%, time 144 h, and temperature 32℃. Under this condition, the removal rate of cyanogenic glucosides reached 89%, and crude protein increment reached 44%. These results provided a theoretical basis for the removal of cyanogenic glucosides in flaxseed and the comprehensive utilization of flaxseed cake.
基金supported by National Natural Science Foundation of China(No.51477148)
文摘In three-phase four-wire systems, unbalanced loads can cause grid currents to be unbalanced, and this may cause the neutral point potential on the grid side to shift. The neutral point potential shift will worsen the control precision as well as the performance of the threephase four-wire unified power quality conditioner(UPQC),and it also leads to unbalanced three-phase output voltage,even causing damage to electric equipment. To deal with unbalanced loads, this paper proposes a matching-ratio compensation algorithm(MCA) for the fundamental active component of load currents, and by employing this MCA,balanced three-phase grid currents can be realized under 100% unbalanced loads. The steady-state fluctuation and the transient drop of the DC bus voltage can also be restrained. This paper establishes the mathematical model of the UPQC, analyzes the mechanism of the DC bus voltage fluctuations, and elaborates the interaction between unbalanced grid currents and DC bus voltage fluctuations;two control strategies of UPQC under three-phase stationary coordinate based on the MCA are given, and finally, the feasibility and effectiveness of the proposed control strategy are verified by experiment results.