With the explosive growth of information, more and more organizations are deploying private cloud systems or renting public cloud systems to process big data. However, there is no existing benchmark suite for evaluati...With the explosive growth of information, more and more organizations are deploying private cloud systems or renting public cloud systems to process big data. However, there is no existing benchmark suite for evaluating cloud performance on the whole system level. To the best of our knowledge, this paper proposes the first benchmark suite CloudRank-D to benchmark and rank cloud computing sys- tems that are shared for running big data applications. We an- alyze the limitations of previous metrics, e.g., floating point operations, for evaluating a cloud computing system, and propose two simple metrics: data processed per second and data processed per Joule as two complementary metrics for evaluating cloud computing systems. We detail the design of CloudRank-D that considers representative applications, di- versity of data characteristics, and dynamic behaviors of both applications and system software platforms. Through experi- ments, we demonstrate the advantages of our proposed met- tics. In several case studies, we evaluate two small-scale de- ployments of cloud computing systems using CloudRank-D.展开更多
文摘With the explosive growth of information, more and more organizations are deploying private cloud systems or renting public cloud systems to process big data. However, there is no existing benchmark suite for evaluating cloud performance on the whole system level. To the best of our knowledge, this paper proposes the first benchmark suite CloudRank-D to benchmark and rank cloud computing sys- tems that are shared for running big data applications. We an- alyze the limitations of previous metrics, e.g., floating point operations, for evaluating a cloud computing system, and propose two simple metrics: data processed per second and data processed per Joule as two complementary metrics for evaluating cloud computing systems. We detail the design of CloudRank-D that considers representative applications, di- versity of data characteristics, and dynamic behaviors of both applications and system software platforms. Through experi- ments, we demonstrate the advantages of our proposed met- tics. In several case studies, we evaluate two small-scale de- ployments of cloud computing systems using CloudRank-D.