Ceramic cutting inserts are a type of cutting tool commonly used in high-speed metal cutting applications.However,the wear of these inserts caused by friction between the workpiece and cutting inserts limits their ove...Ceramic cutting inserts are a type of cutting tool commonly used in high-speed metal cutting applications.However,the wear of these inserts caused by friction between the workpiece and cutting inserts limits their overall effectiveness.In order to improve the tool life and reduce wear,this study introduces an emerging method called magnetic field-assisted batch polishing(MABP)for simultaneously polishing multiple ceramic cutting inserts.Several polishing experiments were conducted under different conditions,and the wear characteristics were clarified by cutting S136H steel.The results showed that after 15 min of polishing,the surface roughness at the flank face,edge,and nose of the inserts was reduced to below 2.5 nm,6.25 nm,and 45.8 nm,respectively.Furthermore,the nose radii of the inserts did not change significantly,and there were no significant changes in the weight percentage of elements before and after polishing.Additionally,the tool life of the batch polished inserts was found to be up to 1.75 times longer than that of unpolished inserts.These findings suggest that the MABP method is an effective way to mass polish ceramic cutting inserts,resulting in significantly reduced tool wear.Furthermore,this novel method offers new possibilities for polishing other tools.展开更多
Material removal in the cutting process is regarded as a friction system with multiple input and output variables.The complexity of the cutting friction system is caused by the extreme conditions existing on the tool...Material removal in the cutting process is regarded as a friction system with multiple input and output variables.The complexity of the cutting friction system is caused by the extreme conditions existing on the tool–chip and tool–workpiece interfaces.The critical issue is significant to use knowledge of cutting friction behaviors to guide researchers and industrial manufacturing engineers in designing rational cutting processes to reduce tool wear and improve surface quality.This review focuses on the state of the art of research on friction behaviors in cutting procedures as well as future perspectives.First,the cutting friction phenomena under extreme conditions,such as high temperature,large strain/strain rates,sticking–sliding contact states,and diverse cutting conditions are analyzed.Second,the theoretical models of cutting friction behaviors and the application of simulation technology are discussed.Third,the factors that affect friction behaviors are analyzed,including material matching,cutting parameters,lubrication/cooling conditions,micro/nano surface textures,and tool coatings.Then,the consequences of the cutting friction phenomena,including tool wear patterns,tool life,chip formation,and the machined surface are analyzed.Finally,the research limitations and future work for cutting friction behaviors are discussed.This review contributes to the understanding of cutting friction behaviors and the development of high-quality cutting technology.展开更多
The demand for optical glass has been rapidly increasing in various industries,where an ultra-smooth surface and form accuracy are critical for the functional elements of the applications.To meet the high surface-qual...The demand for optical glass has been rapidly increasing in various industries,where an ultra-smooth surface and form accuracy are critical for the functional elements of the applications.To meet the high surface-quality requirements,a polishing process is usually adopted to finish the optical glass surface to ensure an ultra-smooth surface and eliminate sub-surface damage.However,current ultra-precision polishing processes normally polish workpieces individually,leading to a low production efficiency and high polishing costs.Current mass-finishing methods cannot be used for optical glasses.Therefore,magnetic-field-assisted batch polishing(MABP)was proposed in this study to overcome this research gap and provide an efficient and cost-effective method for industrial use.A series of polishing experiments were conducted on typical optical components under different polishing parameters to evaluate the polishing performance of MABP on optical glasses.The results demonstrated that MABP is an efficient method to simultaneously polish multiple lenses while achieving a surface roughness,indicated by the arithmetic mean height(Sa),of 0.7 nm and maintained a sub-micrometer surface form for all the workpieces.In addition,no apparent sub-surface damage was observed,indicating the significant potential for the high-quality rapid polishing of optical glasses.The proposed method is highly competitive compared to the current optical polishing methods,which has the potential to revolutionize the polishing process for small optics.展开更多
Dwell time plays a vital role in determining the accuracy and convergence of the computer-controlled optical surfacing process.However,optimizing dwell time presents a challenge due to its ill-posed nature,resulting i...Dwell time plays a vital role in determining the accuracy and convergence of the computer-controlled optical surfacing process.However,optimizing dwell time presents a challenge due to its ill-posed nature,resulting in non-unique solutions.To address this issue,several well-known methods have emerged,including the iterative,Bayesian,Fourier transform,and matrix-form methods.Despite their independent development,these methods share common objectives,such as minimizing residual errors,ensuring dwell time's positivity and smoothness,minimizing total processing time,and enabling flexible dwell positions.This paper aims to comprehensively review the existing dwell time optimization methods,explore their interrelationships,provide insights for their effective implementations,evaluate their performances,and ultimately propose a unified dwell time optimization methodology.展开更多
基金Supported by Research Grants Council of the Government of the Hong Kong Special Administrative Region of China (Grant No.15203620)Research and Innovation Office of The Hong Kong Polytechnic University of China (Grant Nos.BBXN,1-W308)+1 种基金Research Studentships (Grant No.RH3Y)State Key Laboratory of Mechanical System and Vibration of China (Grant No.MSV202315)。
文摘Ceramic cutting inserts are a type of cutting tool commonly used in high-speed metal cutting applications.However,the wear of these inserts caused by friction between the workpiece and cutting inserts limits their overall effectiveness.In order to improve the tool life and reduce wear,this study introduces an emerging method called magnetic field-assisted batch polishing(MABP)for simultaneously polishing multiple ceramic cutting inserts.Several polishing experiments were conducted under different conditions,and the wear characteristics were clarified by cutting S136H steel.The results showed that after 15 min of polishing,the surface roughness at the flank face,edge,and nose of the inserts was reduced to below 2.5 nm,6.25 nm,and 45.8 nm,respectively.Furthermore,the nose radii of the inserts did not change significantly,and there were no significant changes in the weight percentage of elements before and after polishing.Additionally,the tool life of the batch polished inserts was found to be up to 1.75 times longer than that of unpolished inserts.These findings suggest that the MABP method is an effective way to mass polish ceramic cutting inserts,resulting in significantly reduced tool wear.Furthermore,this novel method offers new possibilities for polishing other tools.
基金financial support from the National Key Research and Development Program of China (2019YFB2005401)National Natural Science Foundation of China (Nos. 91860207 and 52175420)+5 种基金Shandong Provincial Key Research and Development Program (Major Scientific and Technological Innovation Project)(No. 2020CXGC010204)Shandong Provincial Natural Science Foundation of China (2021JMRH0301 and2021JMRH0304)Taishan Scholar FoundationInternational Partnership Scheme of the Bureau of the International Scientific Cooperation of the Chinese Academy of Sciences(No. 181722KYSB20180015)Research and Innovation Office of The Hong Kong Polytechnic University (BBX5and BBX7)funding support to the State Key Laboratories in Hong Kong
文摘Material removal in the cutting process is regarded as a friction system with multiple input and output variables.The complexity of the cutting friction system is caused by the extreme conditions existing on the tool–chip and tool–workpiece interfaces.The critical issue is significant to use knowledge of cutting friction behaviors to guide researchers and industrial manufacturing engineers in designing rational cutting processes to reduce tool wear and improve surface quality.This review focuses on the state of the art of research on friction behaviors in cutting procedures as well as future perspectives.First,the cutting friction phenomena under extreme conditions,such as high temperature,large strain/strain rates,sticking–sliding contact states,and diverse cutting conditions are analyzed.Second,the theoretical models of cutting friction behaviors and the application of simulation technology are discussed.Third,the factors that affect friction behaviors are analyzed,including material matching,cutting parameters,lubrication/cooling conditions,micro/nano surface textures,and tool coatings.Then,the consequences of the cutting friction phenomena,including tool wear patterns,tool life,chip formation,and the machined surface are analyzed.Finally,the research limitations and future work for cutting friction behaviors are discussed.This review contributes to the understanding of cutting friction behaviors and the development of high-quality cutting technology.
基金study was mainly supported by grants from the Research Grants Council of the Government of the Hong Kong Special Administrative Region,China(Project No.15203620)the Research and Innovation Office of The Hong Kong Polytechnic University(Project codes:BBXN and BBX5)research studentships(project code:RH3Y).The authors would also like to express their sincere thanks for the funding support from the State Key Laboratories in Hong Kong from the Innovation and Technology Commission(ITC)of the Government of the Hong Kong Special Administrative Region(HKSAR),China.
文摘The demand for optical glass has been rapidly increasing in various industries,where an ultra-smooth surface and form accuracy are critical for the functional elements of the applications.To meet the high surface-quality requirements,a polishing process is usually adopted to finish the optical glass surface to ensure an ultra-smooth surface and eliminate sub-surface damage.However,current ultra-precision polishing processes normally polish workpieces individually,leading to a low production efficiency and high polishing costs.Current mass-finishing methods cannot be used for optical glasses.Therefore,magnetic-field-assisted batch polishing(MABP)was proposed in this study to overcome this research gap and provide an efficient and cost-effective method for industrial use.A series of polishing experiments were conducted on typical optical components under different polishing parameters to evaluate the polishing performance of MABP on optical glasses.The results demonstrated that MABP is an efficient method to simultaneously polish multiple lenses while achieving a surface roughness,indicated by the arithmetic mean height(Sa),of 0.7 nm and maintained a sub-micrometer surface form for all the workpieces.In addition,no apparent sub-surface damage was observed,indicating the significant potential for the high-quality rapid polishing of optical glasses.The proposed method is highly competitive compared to the current optical polishing methods,which has the potential to revolutionize the polishing process for small optics.
基金supported by the Accelerator and Detector Research Program,part of the Scientific User Facility Division of the Basic Energy Science Office of the U.S.Department of Energy(DOE),under the Field Work Proposal No.FWP-PS032This research was performed at the Optical Metrology Laboratory at the National Synchrotron Light Source II,a U.S.DOE Office of Science User Facility operated by Brookhaven National Laboratory(BNL)under Contract No.DE-SC0012704This work was performed under the BNL LDRD 17-016“Diffraction limited and wavefront preserving reflective optics development.”This work was also supported by the Natural Science Foundation of Fujian Province,China,under grant number 2022J011245.
文摘Dwell time plays a vital role in determining the accuracy and convergence of the computer-controlled optical surfacing process.However,optimizing dwell time presents a challenge due to its ill-posed nature,resulting in non-unique solutions.To address this issue,several well-known methods have emerged,including the iterative,Bayesian,Fourier transform,and matrix-form methods.Despite their independent development,these methods share common objectives,such as minimizing residual errors,ensuring dwell time's positivity and smoothness,minimizing total processing time,and enabling flexible dwell positions.This paper aims to comprehensively review the existing dwell time optimization methods,explore their interrelationships,provide insights for their effective implementations,evaluate their performances,and ultimately propose a unified dwell time optimization methodology.