期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
High recorded color rendering performance of single-structured Ce,Mn:Y_(3)(Al,Sc)_(2)Al_(3)O_(12)phosphor ceramics for high-power white LEDs/LDs
1
作者 Xuanchu Liu Congcong Yang +10 位作者 Yanbin Li Chang Min Jian Kang Tianyuan zhou chunming zhou Chaofan Shi Cen Shao Bingheng Sun Wieslaw Strek Hao Chen Le Zhang 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2024年第6期810-820,共11页
Achieving a high color rendering index(CRI)and luminous stability in single-structured Ce:Y_(3)Al_(5)O_(12)(Ce:YAG)phosphor ceramics(PCs)is crucial for high-power white light-emitting diodes or laser diodes(LEDs/LDs).... Achieving a high color rendering index(CRI)and luminous stability in single-structured Ce:Y_(3)Al_(5)O_(12)(Ce:YAG)phosphor ceramics(PCs)is crucial for high-power white light-emitting diodes or laser diodes(LEDs/LDs).However,cyan valleys and insufficient amounts of the red component in the Ce:YAG emission spectra significantly limit their real applications.In this work,a series of Ce,Mn:Y_(3)(Al,Sc)_(2)Al_(3)O_(12)(Ce,Mn:YSAG)PCs were fabricated by vacuum sintering,and efficient spectral regulation was realized for full-color lighting.The cyan valley was filled by the blueshifted emission peak of Ce^(3+)via Sc^(3+)doping.The orange‒red emission at approximately 580 nm was effectively supplemented via Mn^(2+)doping.In particular,CRI of Ce,Mn:YSAG increased from 56.4 to 85.8,a 52%increase compared with that of Ce:YAG under high-power LED excitation,and the operating temperature was stable at approximately 50℃for long working time.Moreover,CRI of 80.9 could still be obtained for PC-based white LDs.These results indicated that Ce,Mn:YSAG PC,which has excellent CRI and luminous stability,is an extremely promising color convertor for high-power white LEDs/LDs. 展开更多
关键词 color rendering index(CRI) color converter Ce:Y_(3)Al_(5)O_(12)(Ce:YAG)phosphor ceramics(PCs) high-power white light-emitting diodes or laser diodes(LEDs/LDs) luminous stability
原文传递
Evolution of domain structure in 0.96(K_(0.48)Na_(0.52))(Nb_(0.96)Sb_(0.04))O_(3)0.04(Bi_(0.50)Na_(0.50))ZrO_(3) ceramics with poling and temperature
2
作者 Jialiang Zhang chunming zhou 《Journal of Materiomics》 SCIE 2022年第1期9-17,共9页
Domain structure often has significant influences on both piezoelectric properties and piezoelectric temperature stability of a ferroelectric ceramic.In-depth studies on the characters of domain structure should be he... Domain structure often has significant influences on both piezoelectric properties and piezoelectric temperature stability of a ferroelectric ceramic.In-depth studies on the characters of domain structure should be helpful for the better understanding of piezoelectric performance.In this work,the evolution of domain structure in large-d_(33)0.96(K_(0.48)Na_(0.52))(Nb_(0.96)Sb_(0.04))O_(3)-0.04(Bi_(0.50)Na_(0.50))ZrO_(3) ceramics with poling and temperature was systematically investigated via comparing the various domain patterns that are obtained by acid-etching.It was found that domain structure changes greatly upon poling and varies largely with temperature.Complex domain patterns consisting of long narrow parallel stripes or herringbone structure separated by 180°domain boundaries are observed in the unpoled ceramics at room temperature.Domain patterns become less complicated upon poling,due to the collective polarization reversals of parallel-stripe domain clusters and banded fine-stripe domain segments.Parallel stripes and herringbone bands become much wider upon poling,as some narrow stripes and herringbone bands coalesce into broad ones,respectively.Hierarchical domain structure is commonly seen in the domain patterns acid-etched at room temperature,but is less frequently recognized at elevated temperatures.Schematic models of domain configurations were proposed to explain the domain structure and its evolution with poling. 展开更多
关键词 (K Na)NbO_(3)-Based piezoelectric ceramics Domain structure Domain configurations Acid-etching POLING
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部