期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Quantization of the Blow-Up Value for the Liouville Equation with Exponential Neumann Boundary Condition
1
作者 Tao Zhang Changliang zhou chunqin zhou 《Communications in Mathematics and Statistics》 SCIE 2018年第1期29-48,共20页
In this paper,we analyze the asymptotic behavior of solution sequences of the Liouville-type equation with Neumann boundary condition.In particular,we will obtain a sharp mass quantization result for the solution sequ... In this paper,we analyze the asymptotic behavior of solution sequences of the Liouville-type equation with Neumann boundary condition.In particular,we will obtain a sharp mass quantization result for the solution sequences at a blow-up point. 展开更多
关键词 Neumann problem Concentration-compactness phenomena Blow-up behaviors Mass quantization
原文传递
Singular Moser-Trudinger Inequality Involving L^(n) Norm in the Entire Euclidean Space
2
作者 Changliang zhou chunqin zhou 《Communications in Mathematics and Statistics》 SCIE 2021年第4期467-501,共35页
In this paper,we investigate a singular Moser-Trudinger inequality involving L^(n) norm in the entire Euclidean space.The blow-up procedures are used for the maximizing sequence.Then we obtain the existence of extrema... In this paper,we investigate a singular Moser-Trudinger inequality involving L^(n) norm in the entire Euclidean space.The blow-up procedures are used for the maximizing sequence.Then we obtain the existence of extremal functions for this singular geometric inequality in whole space.In general,W^(1,n)(R^(n))→L^(q)(R^(n))is a continuous embedding but not compact.But in our case we can prove that W^(1,n)(R^(n))→L^(n)(R^(n))is a compact embedding.Combining the compact embedding W^(1,n)(R^(n))→Lq(R^(n),|x|^(−s)dx)for all q≥n and 0<s<n in[18],we establish the theorems for any 0≤α<1. 展开更多
关键词 Moser-Trudinger inequality Blow-up analysis Existence of extremal functions
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部