Defective TiO2 has attracted increasing attention for use in photocatalytic and electrochemical materials because of its narrowed band-gap and improved visible-light photocatalytic activity. However, a facile and effi...Defective TiO2 has attracted increasing attention for use in photocatalytic and electrochemical materials because of its narrowed band-gap and improved visible-light photocatalytic activity. However, a facile and efficient approach for obtaining defect-rich TiO2 still remains a challenge. Herein, we demonstrate such an approach to narrow its bandgap and improve visible-light absorption through implanting abundant defects by aerodynamic levitated laser annealing (ALLA) treatment. Note that the ALLA method not only provides rapid annealing, solidifying and cooling process, but also exhibits high efficiency for homogeneous and defective TiO2 nanoparticles. The laser-annealed TiO2 achieves a high hydrogen evolution rate of 8.54 mmol.h-1.g-1, excellent decomposition properties within 60 min, and outstanding recyclability and stability, all of which are superior to the corresponding properties of commercial P25.展开更多
基金This work is financially supported by the National Natural Science Foundation of China (Nos. 51471158, 51674232 and 51274182) and Beijing Natural Science Foundation (Nos. 2152032 and 2112039).
文摘Defective TiO2 has attracted increasing attention for use in photocatalytic and electrochemical materials because of its narrowed band-gap and improved visible-light photocatalytic activity. However, a facile and efficient approach for obtaining defect-rich TiO2 still remains a challenge. Herein, we demonstrate such an approach to narrow its bandgap and improve visible-light absorption through implanting abundant defects by aerodynamic levitated laser annealing (ALLA) treatment. Note that the ALLA method not only provides rapid annealing, solidifying and cooling process, but also exhibits high efficiency for homogeneous and defective TiO2 nanoparticles. The laser-annealed TiO2 achieves a high hydrogen evolution rate of 8.54 mmol.h-1.g-1, excellent decomposition properties within 60 min, and outstanding recyclability and stability, all of which are superior to the corresponding properties of commercial P25.