With a rapidly increasing demand and widespread use of radiotherapy treatment, the subject area of in-vivo real time dose rate dosimeters has become a significant area of study. An embedded structure fiber-optic radia...With a rapidly increasing demand and widespread use of radiotherapy treatment, the subject area of in-vivo real time dose rate dosimeters has become a significant area of study. An embedded structure fiber-optic radiation dosimeter has proved to be a promising candidate to fulfil this role because of its high SNR (signal-to-noise ratio) and excellent light conversion efficiency. In this paper, the properties of this kind of dosimeter with respect to different SSD (Source to Surface Distance) and beam field size in a clinical Linac are studied. The characteristics of the dosimeter were evaluated by the sensor’s output intensity response in these conditions.展开更多
In order to meet the increasing demands of modern radiotherapy, real time in-vivo dose measurement has recently attracted significant attention. A small, flexible optical fiber radiation dosimeter, with high signal-to...In order to meet the increasing demands of modern radiotherapy, real time in-vivo dose measurement has recently attracted significant attention. A small, flexible optical fiber radiation dosimeter, with high signal-to-noise ratio (SNR) that employs inorganic scintillator materials is presented. In this paper, some properties are investigated under special conditions, such as saturation properties when the intensity of the X-Ray is increased and the influence of the temperature of the environment. These properties are important to practical considerations if the sensor is to be successfully deployed in-vivo.展开更多
文摘With a rapidly increasing demand and widespread use of radiotherapy treatment, the subject area of in-vivo real time dose rate dosimeters has become a significant area of study. An embedded structure fiber-optic radiation dosimeter has proved to be a promising candidate to fulfil this role because of its high SNR (signal-to-noise ratio) and excellent light conversion efficiency. In this paper, the properties of this kind of dosimeter with respect to different SSD (Source to Surface Distance) and beam field size in a clinical Linac are studied. The characteristics of the dosimeter were evaluated by the sensor’s output intensity response in these conditions.
文摘In order to meet the increasing demands of modern radiotherapy, real time in-vivo dose measurement has recently attracted significant attention. A small, flexible optical fiber radiation dosimeter, with high signal-to-noise ratio (SNR) that employs inorganic scintillator materials is presented. In this paper, some properties are investigated under special conditions, such as saturation properties when the intensity of the X-Ray is increased and the influence of the temperature of the environment. These properties are important to practical considerations if the sensor is to be successfully deployed in-vivo.