The dwarf architecture is an important and valuable agronomic trait in watermelon breeding and has the potential to increase fruit yield and reduce labor cost in crop cultivation.However,the molecular basis for dwarfi...The dwarf architecture is an important and valuable agronomic trait in watermelon breeding and has the potential to increase fruit yield and reduce labor cost in crop cultivation.However,the molecular basis for dwarfism in watermelon remains largely unknown.In this study,a recessive dwarf allele(designated as Cldf(Citrullus lanatus dwarfism))was fine mapped in a 32.88 kb region on chromosome 09 using F2 segregation populations derived from reciprocal crossing of a normal line M08 and a dwarf line N21.Gene annotation of the corresponding region revealed that the Cla015407 gene encoding a gibberellin 3β-hydroxylase functions as the best possible candidate gene for Cldf.Sequence analysis showed that the fourth polymorphism site(a G to A point mutation)at the 3′AG splice receptor site of the intron leads to a 13 bp deletion in the coding sequence of Cldf in dwarf line N21 and thus results in a truncated protein lacking the conserved domain for binding 2-oxoglutarate.In addition,the dwarf phenotype of Cldf could be rescued by exogenous GA3 application.Phylogenetic analysis suggested that the small multigene family GA3ox(GA3 oxidase)in cucurbit species may originate from three ancient lineages in Cucurbitaceae.All these data support the conclusion that Cldf is a GA-deficient mutant,which together with the cosegregated marker can be used for breeding new dwarf cultivars.展开更多
We herein report a facile one-pot synthesis of MnO/N-doped carbon(N—C) composites via a sustainable cotton-template glycineenitrate combustion synthesis to yield superior anode materials for Li ion batteries. MnO nan...We herein report a facile one-pot synthesis of MnO/N-doped carbon(N—C) composites via a sustainable cotton-template glycineenitrate combustion synthesis to yield superior anode materials for Li ion batteries. MnO nanoparticles with several nanometers were well-embedded in a porous N-doped carbon matrix. It displays the unique characteristics, including the shortened Li^+-ion transport path, increased contact areas with the electrolyte solution, inhibited volume changes and agglomeration of nanoparticles, as well as good conductivity and structural stability during the cycling process, thereby benefiting the superior cycling performance and rate capability. This favorable electrochemical performance of obtained MnO/N—C composites via a one-pot biomass-templated glycine/nitrate combustion synthesis renders the suitability as anode materials for Li-ion batteries.展开更多
The sluggish redox reaction kinetics of lithium polysulfides(LiPSs)are considered the main obstacle to the commercial application of lithium-sulfur(Li-S)batteries.To accelerate the conversion by catalysis and inhibit ...The sluggish redox reaction kinetics of lithium polysulfides(LiPSs)are considered the main obstacle to the commercial application of lithium-sulfur(Li-S)batteries.To accelerate the conversion by catalysis and inhibit the shuttling of soluble LiPSs in Li-S batteries,a solution is proposed in this study.The solution involves fabrication of N,S co-doped carbon coated In_(2)O_(3)/In_(2)S_(3)heterostructure(In_(2)O_(3)-In_(2)S_(3)@NSC)as a multifunctional host material for the cathode.The In_(2)O_(3)-In_(2)S_(3)@NSC composite can reduce the Gibbs free energy for the conversion reactions of LiPSs,which results in superior performance.The synergy between different components in In_(2)O_(3)-In_(2)S_(3)@NSC and the unique 3D structure facilitate ion and electron transport in Li-S batteries.The In_(2)O_(3)-In_(2)S_(3)@NSC/Li 2 S 6 cathode exhibits excellent rate capacity,with a capacity of 599 mAh g−1 at 5.5 C,and good cycle stability,with a capacity of 436 mAh g^(−1)after 1000 cycles at 1 C.Overall,this study proposes a promising solution to improve the energy storage properties of Li-S batteries,which could potentially facilitate the commercialization of Li-S batteries.展开更多
Currently,the major therapy for patients with ovarian cancer includes post-cytoreductive surgery followed by chemotherapy of carboplatin or cisplatin plus paclitaxel.The rise of drug resistance is a substantial factor...Currently,the major therapy for patients with ovarian cancer includes post-cytoreductive surgery followed by chemotherapy of carboplatin or cisplatin plus paclitaxel.The rise of drug resistance is a substantial factor in cancer recurrence and mortality among ovarian cancer patients receiving cisplatin treatment.CD147 is widely expressed in a variety of cancer tissues1 and recognized as a drug target for its antibody drug Licartin which has been approved by China’s National Medicines and Pharmaceutical Administration.2 Even though many studies reported that CD147 is involved in the cisplatin resistance of varieties of cancers,3 its mechanism remains unclear.In this investigation,we uncovered a distinctive mechanism by which CD147 regulates cisplatin resistance through the proteasomal degradation of the transcription factor FOXM1,which is associated with DNA damage repair,in ovarian cancer cells.Our results suggest that targeting CD147 may have therapeutic implications for increasing cisplatin efficiency in the management of ovarian cancer.展开更多
Hyperspectral remote sensing image(HSI)fusion with multispectral remote sensing images(MSI)improves data resolution.However,current fusion algorithms focus on local information and overlook long-range dependencies.The...Hyperspectral remote sensing image(HSI)fusion with multispectral remote sensing images(MSI)improves data resolution.However,current fusion algorithms focus on local information and overlook long-range dependencies.The parameter of network tuning prioritizes global optimization,neglecting spatial and spectral constraints,and limiting spatial and spectral reconstruction capabilities.This study introduces SwinGAN,a fusion network combining Swin Transformer,CNN,and GAN architectures.SwinGAN’s generator employs a detail injection framework to separately extract HSI and MSI features,fusing them to generate spatial residuals.These residuals are injected into the supersampled HSI to produce thefinal image,while a pure CNN architecture acts as the discriminator,enhancing the fusion quality.Additionally,we introduce a new adaptive loss function that improves image fusion accuracy.The loss function uses L1 loss as the content loss,and spatial and spectral gradient loss functions are introduced to improve the spatial representation and spectralfidelity of the fused images.Our experimental results on several datasets demonstrate that SwinGAN outperforms current popular algorithms in both spatial and spectral reconstruction capabilities.The ablation experiments also demonstrate the rationality of the various components of the proposed loss function.展开更多
Cerium-doped yttrium aluminum garnet(YAG:Ce) as a yellow phosphor for white light-emitting diodes(LEDs) was synthesized via a facile combustion method using Y2 O3, CeO2, Al2 O3, Al,and NaClO4 as raw materials. Th...Cerium-doped yttrium aluminum garnet(YAG:Ce) as a yellow phosphor for white light-emitting diodes(LEDs) was synthesized via a facile combustion method using Y2 O3, CeO2, Al2 O3, Al,and NaClO4 as raw materials. The combustion synthesis approach utilizes the strong exothermic oxidation of aluminum to realize a self-sustaining reaction. In this study, we investigated the effects of the ratios of Al2 O3 to AI,fluxes, and coprecipitated materials as raw materials on the luminescence properties of the synthesized YAG:Ce phosphors. When the amount of Al2 O3 x is varied, the combustion reaction proceeds at x ≤ 1.8,with x = 1.725 being the optimum condition for producing a high-performance product. When 5 wt%BaF2 is added, the luminescence intensity is significantly improved owing to a decrease of YAP(YAlO3)formation with improved uniformity. However, the addition of CaF2 and NaF does not improve the luminescence properties. To suppress the segregation of CeO2, we used the coprecipitated material Y2 O3-CeO2 as a raw material. Unlike with separate addition of Y2 O3 and CeO2, Ce ions are uniformly distributed in the coprecipitated material, resulting in improved luminescence properties. The combination of BaF2 and coprecipitated material significantly improves the internal quantum efficiency to83.0%, which is close to that of commercial phosphors.展开更多
基金supported by funding from the National Natural Science Foundation of China(Grant No.31701939)the National Natural Science Foundation of Shaanxi Province,China(No.2019JQ-324)+2 种基金the Key Project of Shaanxi Province(2017ZDXM-NY-025)the National Key R&D Program of China(2018YFD0100704)the Modern Agro-Industry Technology Research System of China(No.CARS-26-18).
文摘The dwarf architecture is an important and valuable agronomic trait in watermelon breeding and has the potential to increase fruit yield and reduce labor cost in crop cultivation.However,the molecular basis for dwarfism in watermelon remains largely unknown.In this study,a recessive dwarf allele(designated as Cldf(Citrullus lanatus dwarfism))was fine mapped in a 32.88 kb region on chromosome 09 using F2 segregation populations derived from reciprocal crossing of a normal line M08 and a dwarf line N21.Gene annotation of the corresponding region revealed that the Cla015407 gene encoding a gibberellin 3β-hydroxylase functions as the best possible candidate gene for Cldf.Sequence analysis showed that the fourth polymorphism site(a G to A point mutation)at the 3′AG splice receptor site of the intron leads to a 13 bp deletion in the coding sequence of Cldf in dwarf line N21 and thus results in a truncated protein lacking the conserved domain for binding 2-oxoglutarate.In addition,the dwarf phenotype of Cldf could be rescued by exogenous GA3 application.Phylogenetic analysis suggested that the small multigene family GA3ox(GA3 oxidase)in cucurbit species may originate from three ancient lineages in Cucurbitaceae.All these data support the conclusion that Cldf is a GA-deficient mutant,which together with the cosegregated marker can be used for breeding new dwarf cultivars.
基金financially supported partially by Yashima Environment Technology Foundation and JSPS KAKENHI
文摘We herein report a facile one-pot synthesis of MnO/N-doped carbon(N—C) composites via a sustainable cotton-template glycineenitrate combustion synthesis to yield superior anode materials for Li ion batteries. MnO nanoparticles with several nanometers were well-embedded in a porous N-doped carbon matrix. It displays the unique characteristics, including the shortened Li^+-ion transport path, increased contact areas with the electrolyte solution, inhibited volume changes and agglomeration of nanoparticles, as well as good conductivity and structural stability during the cycling process, thereby benefiting the superior cycling performance and rate capability. This favorable electrochemical performance of obtained MnO/N—C composites via a one-pot biomass-templated glycine/nitrate combustion synthesis renders the suitability as anode materials for Li-ion batteries.
基金supported by the National Natural Sci-ence Foundation of China(Nos.51776218 and 52106120)the Natural Science Foundation of Jiangsu Province(No.BK20180083).
文摘The sluggish redox reaction kinetics of lithium polysulfides(LiPSs)are considered the main obstacle to the commercial application of lithium-sulfur(Li-S)batteries.To accelerate the conversion by catalysis and inhibit the shuttling of soluble LiPSs in Li-S batteries,a solution is proposed in this study.The solution involves fabrication of N,S co-doped carbon coated In_(2)O_(3)/In_(2)S_(3)heterostructure(In_(2)O_(3)-In_(2)S_(3)@NSC)as a multifunctional host material for the cathode.The In_(2)O_(3)-In_(2)S_(3)@NSC composite can reduce the Gibbs free energy for the conversion reactions of LiPSs,which results in superior performance.The synergy between different components in In_(2)O_(3)-In_(2)S_(3)@NSC and the unique 3D structure facilitate ion and electron transport in Li-S batteries.The In_(2)O_(3)-In_(2)S_(3)@NSC/Li 2 S 6 cathode exhibits excellent rate capacity,with a capacity of 599 mAh g−1 at 5.5 C,and good cycle stability,with a capacity of 436 mAh g^(−1)after 1000 cycles at 1 C.Overall,this study proposes a promising solution to improve the energy storage properties of Li-S batteries,which could potentially facilitate the commercialization of Li-S batteries.
基金the National Natural Science Foundation of China(No.81872129)Shaanxi Province University Joint Project(China)(No.2020GXLH-Y009)the Joint Research Funds of the Department of Science&Technology of Shaanxi Province and Northwestern Polytechnical University(China)(No.2020GXLH-Z013).
文摘Currently,the major therapy for patients with ovarian cancer includes post-cytoreductive surgery followed by chemotherapy of carboplatin or cisplatin plus paclitaxel.The rise of drug resistance is a substantial factor in cancer recurrence and mortality among ovarian cancer patients receiving cisplatin treatment.CD147 is widely expressed in a variety of cancer tissues1 and recognized as a drug target for its antibody drug Licartin which has been approved by China’s National Medicines and Pharmaceutical Administration.2 Even though many studies reported that CD147 is involved in the cisplatin resistance of varieties of cancers,3 its mechanism remains unclear.In this investigation,we uncovered a distinctive mechanism by which CD147 regulates cisplatin resistance through the proteasomal degradation of the transcription factor FOXM1,which is associated with DNA damage repair,in ovarian cancer cells.Our results suggest that targeting CD147 may have therapeutic implications for increasing cisplatin efficiency in the management of ovarian cancer.
基金supported by the National Key Research and Development Program of China(No.2020YFA0714103).
文摘Hyperspectral remote sensing image(HSI)fusion with multispectral remote sensing images(MSI)improves data resolution.However,current fusion algorithms focus on local information and overlook long-range dependencies.The parameter of network tuning prioritizes global optimization,neglecting spatial and spectral constraints,and limiting spatial and spectral reconstruction capabilities.This study introduces SwinGAN,a fusion network combining Swin Transformer,CNN,and GAN architectures.SwinGAN’s generator employs a detail injection framework to separately extract HSI and MSI features,fusing them to generate spatial residuals.These residuals are injected into the supersampled HSI to produce thefinal image,while a pure CNN architecture acts as the discriminator,enhancing the fusion quality.Additionally,we introduce a new adaptive loss function that improves image fusion accuracy.The loss function uses L1 loss as the content loss,and spatial and spectral gradient loss functions are introduced to improve the spatial representation and spectralfidelity of the fused images.Our experimental results on several datasets demonstrate that SwinGAN outperforms current popular algorithms in both spatial and spectral reconstruction capabilities.The ablation experiments also demonstrate the rationality of the various components of the proposed loss function.
基金supported by the"Nanotechnology Platform"Program of the Ministry of Education,Culture,Sports,Science and Technology of Japan(MEXT)
文摘Cerium-doped yttrium aluminum garnet(YAG:Ce) as a yellow phosphor for white light-emitting diodes(LEDs) was synthesized via a facile combustion method using Y2 O3, CeO2, Al2 O3, Al,and NaClO4 as raw materials. The combustion synthesis approach utilizes the strong exothermic oxidation of aluminum to realize a self-sustaining reaction. In this study, we investigated the effects of the ratios of Al2 O3 to AI,fluxes, and coprecipitated materials as raw materials on the luminescence properties of the synthesized YAG:Ce phosphors. When the amount of Al2 O3 x is varied, the combustion reaction proceeds at x ≤ 1.8,with x = 1.725 being the optimum condition for producing a high-performance product. When 5 wt%BaF2 is added, the luminescence intensity is significantly improved owing to a decrease of YAP(YAlO3)formation with improved uniformity. However, the addition of CaF2 and NaF does not improve the luminescence properties. To suppress the segregation of CeO2, we used the coprecipitated material Y2 O3-CeO2 as a raw material. Unlike with separate addition of Y2 O3 and CeO2, Ce ions are uniformly distributed in the coprecipitated material, resulting in improved luminescence properties. The combination of BaF2 and coprecipitated material significantly improves the internal quantum efficiency to83.0%, which is close to that of commercial phosphors.