期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
RELU DEEP NEURAL NETWORKS AND LINEAR FINITE ELEMENTS 被引量:2
1
作者 Juncai He Lin Li +1 位作者 Jinchao Xu chunyue zheng 《Journal of Computational Mathematics》 SCIE CSCD 2020年第3期502-527,共26页
In this paper,we investigate the relationship between deep neural net works(DNN)with rectified linear unit(ReLU)function as the activation function and continuous piecewise linear(CPWL)functions,especially CPWL functi... In this paper,we investigate the relationship between deep neural net works(DNN)with rectified linear unit(ReLU)function as the activation function and continuous piecewise linear(CPWL)functions,especially CPWL functions from the simplicial linear finite element method(FEM).We first consider the special case of FEM.By exploring the DNN representation of its nodal basis functions,we present a ReLU DNN representation of CPWL in FEM.We theoretically establish that at least 2 hidden layers are needed in a ReLU DNN to represent any linear finite element functions inΩ■R^2 when d≥2.Consequently,for d=2,3 which are often encountered in scientific and engineering computing,the minimal number of two hidden layers are necessary and sufficient for any CPWL function to be represented by a ReLU DNN.Then we include a detailed account on how a general CPWL in R^d can be represented by a ReLU DNN with at most[log2(d+1)]|hidden layers and we also give an estimation of the number of neurons in DNN that are needed in such a represe ntation.Furthermore,using the relationship bet ween DNN and FEM,we theoretically argue that a special class of DNN models with low bit-width are still expected to have an adequate representation power in applications.Finally,as a proof of concept,we present some numerical results for using ReLU DNNs to solve a two point boundary problem to demonstrate the potential of applying DNN for numerical solution of partial differential equations. 展开更多
关键词 Finite element method Deep neural network Piecewise linear function
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部