The general features of the Great Whirl(GW)off the Somali Coast in 2017 and its influences on chlorophyll a(Chl a)concentration were studied by using satellite data and model outputs.Results show that GW,which initiat...The general features of the Great Whirl(GW)off the Somali Coast in 2017 and its influences on chlorophyll a(Chl a)concentration were studied by using satellite data and model outputs.Results show that GW,which initiated at7°N,53°E on June 13,had a lifetime of 153 d with an average amplitude of 16 cm and an average radius of 205 km.After the formation of GW,the concentration of Chl a in the interior of GW showed a downward trend throughout its life cycle,except in early July and mid-October.In early July,the Chl a blooms in the interior of GW were attributed to the combined effect of three processes.They are eddy horizontal transportation,the deepening of the mixed layer caused by the monsoon and eddy pumping,and the upward transportation of nutrients caused by eddy-induced Ekman pumping.In October,the Chl a blooms were probably due to the weakening of GW.During the period,water exchange occurred more frequently across the eddy,thus phytoplanktons were imported into the interior of GW.展开更多
基金The National Natural Science Foundation of China under contract Nos 41830538 and 42090042the Chinese Academy of Sciences Fund under contract Nos XDA15020901,133244KYSB20190031,ZDRW-XH-2019-2,ISEE2021PY02 and ISEE2021ZD01+1 种基金Guangdong Basic and Applied Basic Research Fund under contract No.2020A1515010498the Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)Fund under contract Nos GML2019ZD0303 and 2019BT02H594。
文摘The general features of the Great Whirl(GW)off the Somali Coast in 2017 and its influences on chlorophyll a(Chl a)concentration were studied by using satellite data and model outputs.Results show that GW,which initiated at7°N,53°E on June 13,had a lifetime of 153 d with an average amplitude of 16 cm and an average radius of 205 km.After the formation of GW,the concentration of Chl a in the interior of GW showed a downward trend throughout its life cycle,except in early July and mid-October.In early July,the Chl a blooms in the interior of GW were attributed to the combined effect of three processes.They are eddy horizontal transportation,the deepening of the mixed layer caused by the monsoon and eddy pumping,and the upward transportation of nutrients caused by eddy-induced Ekman pumping.In October,the Chl a blooms were probably due to the weakening of GW.During the period,water exchange occurred more frequently across the eddy,thus phytoplanktons were imported into the interior of GW.