High-voltage lithium metal batteries(LMBs)have been considered promising next-generation highenergy-density batteries.However,commercial carbonate electrolytes can scarcely be employed in LMBs owing to their poor comp...High-voltage lithium metal batteries(LMBs)have been considered promising next-generation highenergy-density batteries.However,commercial carbonate electrolytes can scarcely be employed in LMBs owing to their poor compatibility with metallic lithium.N,N-dimethylacrylamide(DMAA)-a crosslinkable solubilizer with a high Gutmann donor number-is employed to facilitate the dissolution of insoluble lithium nitrate(LiNO3)in carbonate-based electrolytes and to form gel polymer electrolytes(GPEs)through in situ polymerization.The Lit solvation structure of the GPEs is regulated using LiNO3 and DMAA,which suppresses the decomposition of LiPFe and facilitates the formation of an inorganic-rich solid electrolyte interface.Consequently,the Coulombic efficiency(CE)of the LillCu cell assembled with a GPE increases to 98.5%at room temperature,and the high-voltage LillNCM622 cell achieves a capacity retention of 80.1%with a high CE of 99.5%after 400 cycles.The bifunctional polymer electrolytes are anticipated to pave the way for next-generation high-voltage LMBs.展开更多
基金supported by the National Natural Science Foundation of China(51971250)China Postdoctoral Science Foundation(2023M733933)+1 种基金the Natural Science Foundation of Hunan Province(2023J40759)the State Key Laboratory of Powder Metallurgy at Central South University.
文摘High-voltage lithium metal batteries(LMBs)have been considered promising next-generation highenergy-density batteries.However,commercial carbonate electrolytes can scarcely be employed in LMBs owing to their poor compatibility with metallic lithium.N,N-dimethylacrylamide(DMAA)-a crosslinkable solubilizer with a high Gutmann donor number-is employed to facilitate the dissolution of insoluble lithium nitrate(LiNO3)in carbonate-based electrolytes and to form gel polymer electrolytes(GPEs)through in situ polymerization.The Lit solvation structure of the GPEs is regulated using LiNO3 and DMAA,which suppresses the decomposition of LiPFe and facilitates the formation of an inorganic-rich solid electrolyte interface.Consequently,the Coulombic efficiency(CE)of the LillCu cell assembled with a GPE increases to 98.5%at room temperature,and the high-voltage LillNCM622 cell achieves a capacity retention of 80.1%with a high CE of 99.5%after 400 cycles.The bifunctional polymer electrolytes are anticipated to pave the way for next-generation high-voltage LMBs.