Studies have shown that myelin-associated glycoprotein(MAG)can inhibit axon regeneration after nerve injury.However,the effects of MAG on neuroma formation after peripheral nerve injury remain poorly understood.In thi...Studies have shown that myelin-associated glycoprotein(MAG)can inhibit axon regeneration after nerve injury.However,the effects of MAG on neuroma formation after peripheral nerve injury remain poorly understood.In this study,local injection of MAG combined with nerve cap made of chitin conduit was used to intervene with the formation of painful neuroma after sciatic nerve transfection in rats.After 8 weeks of combined treatment,the autotomy behaviors were reduced in rats subjected to sciatic nerve transfection,the mRNA expression of nerve growth factor,a pain marker,in the proximal nerve stump was decreased,the density of regenerated axons was decreased,the thickness of the myelin sheath was increased,and the ratio of unmyelinated to myelinated axons was reduced.Moereover,the percentage of collagen fiber area and the percentage of fibrosis marker alpha-smooth muscle actin positive staining area in the proximal nerve stump were decreased.The combined treatment exhibited superior effects in these measures to chitin conduit treatment alone.These findings suggest that MAG combined with chitin conduit synergistically inhibits the formation of painful neuroma after sciatic nerve transection and alleviates neuropathic pain.This study was approved by the Animal Ethics Committee of Peking University People’s Hospital(approval No.2019PHE027)on December 5,2019.展开更多
With the development of neuroscience, substantial advances have been achieved in peripheral nerve regeneration over the past decades. However, peripheral nerve injury remains a critical public health problem because o...With the development of neuroscience, substantial advances have been achieved in peripheral nerve regeneration over the past decades. However, peripheral nerve injury remains a critical public health problem because of the subsequent impairment or absence of sensorimotor function. Uncomfortable complications of peripheral nerve injury, such as chronic pain, can also cause problems for families and society. A number of studies have demonstrated that the proper functioning of the nervous system depends not only on a complete connection from the central nervous system to the surrounding targets at an anatomical level, but also on the continuous bilateral communication between the two. After peripheral nerve injury, the interruption of afferent and efferent signals can cause complex pathophysiological changes, including neurochemical alterations, modifications in the adaptability of excitatory and inhibitory neurons, and the reorganization of somatosensory and motor regions. This review discusses the close relationship between the cerebral cortex and peripheral nerves. We also focus on common therapies for peripheral nerve injury and summarize their potential mechanisms in relation to cortical plasticity. It has been suggested that cortical plasticity may be important for improving functional recovery after peripheral nerve damage. Further understanding of the potential common mechanisms between cortical reorganization and nerve injury will help to elucidate the pathophysiological processes of nerve injury, and may allow for the reduction of adverse consequences during peripheral nerve injury recovery. We also review the role that regulating reorganization mechanisms plays in functional recovery, and conclude with a suggestion to target cortical plasticity along with therapeutic interventions to promote peripheral nerve injury recovery.展开更多
Diving medicine is one of the branches of military medicine,and plays an important role in naval development.This review introduces the progress of researches on undersea and hyperbaric physiology and medicine in the ...Diving medicine is one of the branches of military medicine,and plays an important role in naval development.This review introduces the progress of researches on undersea and hyperbaric physiology and medicine in the past few years in China.The article describes our research achievement in conventional diving and its medical support,researches on saturation diving and its medical support,submarine escape and its medical support,effects of hyperbaric environments and fast buoyancy ascent on immunological and cardiological functions.Diving disorders(including decompression sickness and oxygen toxicity) are also introduced.展开更多
The introduction of neurotrophic factors into injured peripheral nerve sites is beneficial to peripheral nerve regeneration.However,neurotrophic facto rs are rapidly degraded in vivo and obstruct axonal regeneration w...The introduction of neurotrophic factors into injured peripheral nerve sites is beneficial to peripheral nerve regeneration.However,neurotrophic facto rs are rapidly degraded in vivo and obstruct axonal regeneration when used at a supraphysiological dose,which limits their clinical benefits.Bioactive mimetic peptides have been developed to be used in place of neurotrophic factors because they have a similar mode of action to the original growth fa ctors and can activate the equivalent receptors but have simplified sequences and structures.In this study,we created polydopamine-modified chitin conduits loaded with brain-derived neurotrophic factor mimetic peptides and vascular endothelial growth fa ctor mimetic peptides(Chi/PDA-Ps).We found that the Chi/PDA-Ps conduits were less cytotoxic in vitro than chitin conduits alone and provided sustained release of functional peptides.In this study,we evaluated the biocompatibility of the Chi/P DA-Ps conduits.Brain-derived neurotrophic factor mimetic peptide and vascular endothelial growth fa ctor mimetic peptide synergistically promoted prolife ration of Schwann cells and secretion of neurotrophic factors by Schwann cells and attachment and migration of endothelial cells in vitro.The Chi/P DA-Ps conduits were used to bridge a 2 mm gap between the nerve stumps in rat models of sciatic nerve injury.We found that the application of Chi/PDA-Ps conduits could improve the motor function of rats and reduce gastrocnemius atrophy.The electrophysiological results and the microstructure of regenerative nerves showed that the nerve conduction function and re myelination was further resto red.These findings suggest that the Chi/PDA-Ps conduits have great potential in peripheral nerve injury repair.展开更多
Exosomes derived from mesenchymal stem cells are of therapeutic interest because of their important role in intracellular communication and biological regulation.On the basis of previously studied nerve conduits,we de...Exosomes derived from mesenchymal stem cells are of therapeutic interest because of their important role in intracellular communication and biological regulation.On the basis of previously studied nerve conduits,we designed a polydopamine-modified chitin conduit loaded with mesenchymal stem cell-derived exosomes that release the exosomes in a sustained and stable manner.In vitro experiments revealed that rat mesenchymal stem cell-derived exosomes enhanced Schwann cell proliferation and secretion of neurotrophic and growth factors,increased the expression of Jun and Sox2 genes,decreased the expression of Mbp and Krox20 genes in Schwann cells,and reprogrammed Schwann cells to a repair phenotype.Furthermore,mesenchymal stem cell-derived exosomes promoted neurite growth of dorsal root ganglia.The polydopamine-modified chitin conduits loaded with mesenchymal stem cell-derived exosomes were used to bridge 2 mm rat sciatic nerve defects.Sustained release of exosomes greatly accelerated nerve healing and improved nerve function.These findings confirm that sustained release of mesenchymal stem cell-derived exosomes loaded into polydopamine-modified chitin conduits promotes the functional recovery of injured peripheral nerves.展开更多
Transferring the contralateral C7 nerve root to the median or radial nerve has become an important means of repairing brachial plexus nerve injury.However,outcomes have been disappointing.Electroencephalography(EEG)-b...Transferring the contralateral C7 nerve root to the median or radial nerve has become an important means of repairing brachial plexus nerve injury.However,outcomes have been disappointing.Electroencephalography(EEG)-based human-machine interfaces have achieved promising results in promoting neurological recovery by controlling a distal exoskeleton to perform functional limb exercises early after nerve injury,which maintains target muscle activity and promotes the neurological rehabilitation effect.This review summarizes the progress of research in EEG-based human-machine interface combined with contralateral C7 transfer repair of brachial plexus nerve injury.Nerve transfer may result in loss of nerve function in the donor area,so only nerves with minimal impact on the donor area,such as the C7 nerve,should be selected as the donor.Single tendon transfer does not fully restore optimal joint function,so multiple functions often need to be reestablished simultaneously.Compared with traditional manual rehabilitation,EEG-based human-machine interfaces have the potential to maximize patient initiative and promote nerve regeneration and cortical remodeling,which facilitates neurological recovery.In the early stages of brachial plexus injury treatment,the use of an EEG-based human-machine interface combined with contralateral C7 transfer can facilitate postoperative neurological recovery by making full use of the brain’s computational capabilities and actively controlling functional exercise with the aid of external machinery.It can also prevent disuse atrophy of muscles and target organs and maintain neuromuscular junction effectiveness.Promoting cortical remodeling is also particularly important for neurological recovery after contralateral C7 transfer.Future studies are needed to investigate the mechanism by which early movement delays neuromuscular junction damage and promotes cortical remodeling.Understanding this mechanism should help guide the development of neurological rehabilitation strategies for patients with brachial plexus injury.展开更多
基金the National Natural Science Foundation of China,No.31771322Major R&D Program of National Ministry of Science and Technology of China,No.2018YFB1105504+1 种基金Beijing Natural Science Foundation of China,No.7212121and Shenzhen Science and Technology Plan Project of China,No.JCYJ20190806162205278(all to PXZ).
文摘Studies have shown that myelin-associated glycoprotein(MAG)can inhibit axon regeneration after nerve injury.However,the effects of MAG on neuroma formation after peripheral nerve injury remain poorly understood.In this study,local injection of MAG combined with nerve cap made of chitin conduit was used to intervene with the formation of painful neuroma after sciatic nerve transfection in rats.After 8 weeks of combined treatment,the autotomy behaviors were reduced in rats subjected to sciatic nerve transfection,the mRNA expression of nerve growth factor,a pain marker,in the proximal nerve stump was decreased,the density of regenerated axons was decreased,the thickness of the myelin sheath was increased,and the ratio of unmyelinated to myelinated axons was reduced.Moereover,the percentage of collagen fiber area and the percentage of fibrosis marker alpha-smooth muscle actin positive staining area in the proximal nerve stump were decreased.The combined treatment exhibited superior effects in these measures to chitin conduit treatment alone.These findings suggest that MAG combined with chitin conduit synergistically inhibits the formation of painful neuroma after sciatic nerve transection and alleviates neuropathic pain.This study was approved by the Animal Ethics Committee of Peking University People’s Hospital(approval No.2019PHE027)on December 5,2019.
基金supported by the Key Laboratory of Trauma and Neural Regeneration (Peking University),Ministry of Education of China,No. BMU2020XY005-03National Natural Science Foundation of China,No. 31771322+2 种基金Beijing Science&Technology New Star Cross Project of China,No. 201819Major R&D Program of National Ministry of Science and Technology of China,No. 2018YFB1105504a grant from National Center for Trauma Medicine,Beijing,China,No. BMU2020XY005-01 (all to PXZ)。
文摘With the development of neuroscience, substantial advances have been achieved in peripheral nerve regeneration over the past decades. However, peripheral nerve injury remains a critical public health problem because of the subsequent impairment or absence of sensorimotor function. Uncomfortable complications of peripheral nerve injury, such as chronic pain, can also cause problems for families and society. A number of studies have demonstrated that the proper functioning of the nervous system depends not only on a complete connection from the central nervous system to the surrounding targets at an anatomical level, but also on the continuous bilateral communication between the two. After peripheral nerve injury, the interruption of afferent and efferent signals can cause complex pathophysiological changes, including neurochemical alterations, modifications in the adaptability of excitatory and inhibitory neurons, and the reorganization of somatosensory and motor regions. This review discusses the close relationship between the cerebral cortex and peripheral nerves. We also focus on common therapies for peripheral nerve injury and summarize their potential mechanisms in relation to cortical plasticity. It has been suggested that cortical plasticity may be important for improving functional recovery after peripheral nerve damage. Further understanding of the potential common mechanisms between cortical reorganization and nerve injury will help to elucidate the pathophysiological processes of nerve injury, and may allow for the reduction of adverse consequences during peripheral nerve injury recovery. We also review the role that regulating reorganization mechanisms plays in functional recovery, and conclude with a suggestion to target cortical plasticity along with therapeutic interventions to promote peripheral nerve injury recovery.
文摘Diving medicine is one of the branches of military medicine,and plays an important role in naval development.This review introduces the progress of researches on undersea and hyperbaric physiology and medicine in the past few years in China.The article describes our research achievement in conventional diving and its medical support,researches on saturation diving and its medical support,submarine escape and its medical support,effects of hyperbaric environments and fast buoyancy ascent on immunological and cardiological functions.Diving disorders(including decompression sickness and oxygen toxicity) are also introduced.
基金the National Natural Science Foundation of China,Nos.31771322,31571235the Natural Science Foundation of Beijing,No.7212121+3 种基金Beijing Science Technology New Star Cross Subject of China,No.2018019Shenzhen Science and Technology Plan Project of China,No.JCYJ 20190806162205278the Key Laboratory of Trauma and Neural Regeneration(Peking University),Ministry of Educationa grant from National Center for Trauma Medicine,No.BMU2020XY005-01(all to PXZ)。
文摘The introduction of neurotrophic factors into injured peripheral nerve sites is beneficial to peripheral nerve regeneration.However,neurotrophic facto rs are rapidly degraded in vivo and obstruct axonal regeneration when used at a supraphysiological dose,which limits their clinical benefits.Bioactive mimetic peptides have been developed to be used in place of neurotrophic factors because they have a similar mode of action to the original growth fa ctors and can activate the equivalent receptors but have simplified sequences and structures.In this study,we created polydopamine-modified chitin conduits loaded with brain-derived neurotrophic factor mimetic peptides and vascular endothelial growth fa ctor mimetic peptides(Chi/PDA-Ps).We found that the Chi/PDA-Ps conduits were less cytotoxic in vitro than chitin conduits alone and provided sustained release of functional peptides.In this study,we evaluated the biocompatibility of the Chi/P DA-Ps conduits.Brain-derived neurotrophic factor mimetic peptide and vascular endothelial growth fa ctor mimetic peptide synergistically promoted prolife ration of Schwann cells and secretion of neurotrophic factors by Schwann cells and attachment and migration of endothelial cells in vitro.The Chi/P DA-Ps conduits were used to bridge a 2 mm gap between the nerve stumps in rat models of sciatic nerve injury.We found that the application of Chi/PDA-Ps conduits could improve the motor function of rats and reduce gastrocnemius atrophy.The electrophysiological results and the microstructure of regenerative nerves showed that the nerve conduction function and re myelination was further resto red.These findings suggest that the Chi/PDA-Ps conduits have great potential in peripheral nerve injury repair.
基金supported by the National Natural Science Foundation of China,Nos.31771322,31571235the National Science Foundation of Beijing,No.7212121+3 种基金Beijing Science Technology New Star Cross Subject,No.2018019Science and Technology Plan Project of Shenzhen,No.JCYJ 20190806162205278the Key Laboratory of Trauma and Neural Regeneration(Peking University),Ministry of Educationa grant from National Center for Trauma Medicine,No.BMU2020XY005-01(all to PXZ).
文摘Exosomes derived from mesenchymal stem cells are of therapeutic interest because of their important role in intracellular communication and biological regulation.On the basis of previously studied nerve conduits,we designed a polydopamine-modified chitin conduit loaded with mesenchymal stem cell-derived exosomes that release the exosomes in a sustained and stable manner.In vitro experiments revealed that rat mesenchymal stem cell-derived exosomes enhanced Schwann cell proliferation and secretion of neurotrophic and growth factors,increased the expression of Jun and Sox2 genes,decreased the expression of Mbp and Krox20 genes in Schwann cells,and reprogrammed Schwann cells to a repair phenotype.Furthermore,mesenchymal stem cell-derived exosomes promoted neurite growth of dorsal root ganglia.The polydopamine-modified chitin conduits loaded with mesenchymal stem cell-derived exosomes were used to bridge 2 mm rat sciatic nerve defects.Sustained release of exosomes greatly accelerated nerve healing and improved nerve function.These findings confirm that sustained release of mesenchymal stem cell-derived exosomes loaded into polydopamine-modified chitin conduits promotes the functional recovery of injured peripheral nerves.
基金supported by the National Natural Science Foundation of China, No.31771322(to PXZ)the Natural Science Foundation of Beijing, No.7212121(to PXZ)+2 种基金Shenzhen Science and Technology Plan Project, No.JCYJ20190806162205278(to PXZ)Funds for Severe Trauma Standardized Treatment, No.SZSM202011001(to PXZ)a grant from National Center for Trauma Medicine, Beijing, China, No.BMU2020 XY005-01(to PXZ)
文摘Transferring the contralateral C7 nerve root to the median or radial nerve has become an important means of repairing brachial plexus nerve injury.However,outcomes have been disappointing.Electroencephalography(EEG)-based human-machine interfaces have achieved promising results in promoting neurological recovery by controlling a distal exoskeleton to perform functional limb exercises early after nerve injury,which maintains target muscle activity and promotes the neurological rehabilitation effect.This review summarizes the progress of research in EEG-based human-machine interface combined with contralateral C7 transfer repair of brachial plexus nerve injury.Nerve transfer may result in loss of nerve function in the donor area,so only nerves with minimal impact on the donor area,such as the C7 nerve,should be selected as the donor.Single tendon transfer does not fully restore optimal joint function,so multiple functions often need to be reestablished simultaneously.Compared with traditional manual rehabilitation,EEG-based human-machine interfaces have the potential to maximize patient initiative and promote nerve regeneration and cortical remodeling,which facilitates neurological recovery.In the early stages of brachial plexus injury treatment,the use of an EEG-based human-machine interface combined with contralateral C7 transfer can facilitate postoperative neurological recovery by making full use of the brain’s computational capabilities and actively controlling functional exercise with the aid of external machinery.It can also prevent disuse atrophy of muscles and target organs and maintain neuromuscular junction effectiveness.Promoting cortical remodeling is also particularly important for neurological recovery after contralateral C7 transfer.Future studies are needed to investigate the mechanism by which early movement delays neuromuscular junction damage and promotes cortical remodeling.Understanding this mechanism should help guide the development of neurological rehabilitation strategies for patients with brachial plexus injury.