Employing photothermal conversion to improve the photocatalytic activity of g-C3N4 is rarely reported previously. Herein, different ratios of g-C3N4/Bi2S3 heterojunction materials are synthesized by a facile ultrasoni...Employing photothermal conversion to improve the photocatalytic activity of g-C3N4 is rarely reported previously. Herein, different ratios of g-C3N4/Bi2S3 heterojunction materials are synthesized by a facile ultrasonic method. Advanced characterizations such as X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy are employed to analyze the morphology and structure of the prepared materials. Compared with sole counterparts, the heterojunction materials CN-Bi S-2 exhibit significantly enhanced photocatalytic performance, which is 2.05-fold as g-C3N4 and 4.42-fold as Bi2S3. A possible degradation pathway of methylene blue(MB) was proposed. Based on the photoproduced high-energy electrons and photothermal effect of Bi2S3, the transfer and separation of electron-hole pairs are greatly enhanced and more active species are produced. In addition, the relatively high utilization efficiency of solar energy has synergistic effect for the better photocatalytic performance.展开更多
基金supported by the National Natural Science Foundation of China(21577132)Bing-Jie Ni acknowledges the support of the Australian Research Council(ARC)Future Fellowship(FT160100195)~~
文摘Employing photothermal conversion to improve the photocatalytic activity of g-C3N4 is rarely reported previously. Herein, different ratios of g-C3N4/Bi2S3 heterojunction materials are synthesized by a facile ultrasonic method. Advanced characterizations such as X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy are employed to analyze the morphology and structure of the prepared materials. Compared with sole counterparts, the heterojunction materials CN-Bi S-2 exhibit significantly enhanced photocatalytic performance, which is 2.05-fold as g-C3N4 and 4.42-fold as Bi2S3. A possible degradation pathway of methylene blue(MB) was proposed. Based on the photoproduced high-energy electrons and photothermal effect of Bi2S3, the transfer and separation of electron-hole pairs are greatly enhanced and more active species are produced. In addition, the relatively high utilization efficiency of solar energy has synergistic effect for the better photocatalytic performance.