A micromechanical model, based on the FEA (finite element analysis), was developed to estimate the influence of hydrogen pressure on short crack behaviour. Morphology of voids has important connotations in the develop...A micromechanical model, based on the FEA (finite element analysis), was developed to estimate the influence of hydrogen pressure on short crack behaviour. Morphology of voids has important connotations in the development of the model. Stress intensity factor was calculated for different crack geometries under hydrogen pressure. The analysis indicates that the form factor of a crack emerging from a round void will be less affected by trapped hydrogen pressure-compared to an elongated void. This analysis reinforces the beneficial effect of inclusion shape control in reducing significantly the detrimental effect of hydrogen.展开更多
The intent of this paper is to propose an engineering approach to estimate the stress intensity factor of a micro crack emerging from an inclusion in relation with the morphology of the inclusion and its relative stif...The intent of this paper is to propose an engineering approach to estimate the stress intensity factor of a micro crack emerging from an inclusion in relation with the morphology of the inclusion and its relative stiffness with the matrix. A micromechanical model, based on the FEA (finite element analysis) of the behavior of cracks initiated at micro structural features such as inclusions, has been developed using LEFM (Linear Elastic Fracture Mechanics) to predict the stress intensity factor of a micro crack emerging from an inclusion. Morphology of inclusions has important connotations in the development of the analysis. Stress intensity factor has been estimated from the FEA model for different crack geometries. Metallographic analysis of inclusions has been carried out to evaluate the typical inclusion geometry. It also suggests that micro cracks less than 1?μm behave differently than larger cracks.展开更多
文摘A micromechanical model, based on the FEA (finite element analysis), was developed to estimate the influence of hydrogen pressure on short crack behaviour. Morphology of voids has important connotations in the development of the model. Stress intensity factor was calculated for different crack geometries under hydrogen pressure. The analysis indicates that the form factor of a crack emerging from a round void will be less affected by trapped hydrogen pressure-compared to an elongated void. This analysis reinforces the beneficial effect of inclusion shape control in reducing significantly the detrimental effect of hydrogen.
文摘The intent of this paper is to propose an engineering approach to estimate the stress intensity factor of a micro crack emerging from an inclusion in relation with the morphology of the inclusion and its relative stiffness with the matrix. A micromechanical model, based on the FEA (finite element analysis) of the behavior of cracks initiated at micro structural features such as inclusions, has been developed using LEFM (Linear Elastic Fracture Mechanics) to predict the stress intensity factor of a micro crack emerging from an inclusion. Morphology of inclusions has important connotations in the development of the analysis. Stress intensity factor has been estimated from the FEA model for different crack geometries. Metallographic analysis of inclusions has been carried out to evaluate the typical inclusion geometry. It also suggests that micro cracks less than 1?μm behave differently than larger cracks.