期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Multi-bump positive solutions for a logarithmic Schrödinger equation with deepening potential well
1
作者 claudianor o.alves Chao Ji 《Science China Mathematics》 SCIE CSCD 2022年第8期1577-1598,共22页
This article concerns the existence of multi-bump positive solutions for the following logarithmic Schrödinger equation:{−Δu+λV(x)u=ulogu^(2)inRN,u∈H^(1)(R^(N)),where N≥1,⋋>0 is a parameter and the nonnega... This article concerns the existence of multi-bump positive solutions for the following logarithmic Schrödinger equation:{−Δu+λV(x)u=ulogu^(2)inRN,u∈H^(1)(R^(N)),where N≥1,⋋>0 is a parameter and the nonnegative continuous function V:ℝ^(N)→ℝhas potential wellΩ:=int V^(−1)(0)which possesses k disjoint bounded componentsΩ=∪^(k)_(j)=1Ω_(j).Using the variational methods,we prove that if the parameter⋋>0 is large enough,then the equation has at least 2^(k)−1 multi-bump positive solutions. 展开更多
关键词 variational methods logarithmic Schrödinger equation multi-bump solutions deepening potential well
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部