The sacrificial polymeric template usually used in lithographic methods could be replaced by crystalline materials such as ionic salts which, in some special conditions, can form arrays of single crystals. Atomic forc...The sacrificial polymeric template usually used in lithographic methods could be replaced by crystalline materials such as ionic salts which, in some special conditions, can form arrays of single crystals. Atomic force microscopy investigations performed on such samples show their regularity and nanometric thickness. They can serve as a part of an ionic/molecular crystal grid or as mask in crystal lithography. Alternating the polarity degree of the employed solvents/dispersing media by matching materials qualities, we fabricated a sodium chromate and sulphur crystalline net, iron oxide nanoparticle grid and a sulphur single crystal array. The lack of any expensive/sophisticated technology in the production process of final devices makes this approach attractive.展开更多
The chemical, physical, and biological properties of more than two millions of proteins which follow to be synthesized by Pharmaceutical Industry, can be anticipated (by using their XRD diffrac-tograms) if they will b...The chemical, physical, and biological properties of more than two millions of proteins which follow to be synthesized by Pharmaceutical Industry, can be anticipated (by using their XRD diffrac-tograms) if they will be grown from aqueous drops as high quality, large volume single-crystals. This is not a simple task and usually the growing process is seen as art rather than a science. The growing is expensive, time consuming, and finally an amorphous aggregate may result instead one single-crystal. In this article, we show for the first time how one single crystal can be grown in large volume hanging drops through their fast evaporation. The single nucleation is determined by choosing the proper sense of gravitational force relative to the drop triple line contact. In a special configuration, single-crystals of glycine and threonine were rapidly grown.展开更多
文摘The sacrificial polymeric template usually used in lithographic methods could be replaced by crystalline materials such as ionic salts which, in some special conditions, can form arrays of single crystals. Atomic force microscopy investigations performed on such samples show their regularity and nanometric thickness. They can serve as a part of an ionic/molecular crystal grid or as mask in crystal lithography. Alternating the polarity degree of the employed solvents/dispersing media by matching materials qualities, we fabricated a sodium chromate and sulphur crystalline net, iron oxide nanoparticle grid and a sulphur single crystal array. The lack of any expensive/sophisticated technology in the production process of final devices makes this approach attractive.
文摘The chemical, physical, and biological properties of more than two millions of proteins which follow to be synthesized by Pharmaceutical Industry, can be anticipated (by using their XRD diffrac-tograms) if they will be grown from aqueous drops as high quality, large volume single-crystals. This is not a simple task and usually the growing process is seen as art rather than a science. The growing is expensive, time consuming, and finally an amorphous aggregate may result instead one single-crystal. In this article, we show for the first time how one single crystal can be grown in large volume hanging drops through their fast evaporation. The single nucleation is determined by choosing the proper sense of gravitational force relative to the drop triple line contact. In a special configuration, single-crystals of glycine and threonine were rapidly grown.