A Florida wastewater treatment facility studied how Simultaneous Nitrification Denitrification (SND) coupled with traditional nitrogen removal would be used to meet the state’s current advanced wastewater treatment n...A Florida wastewater treatment facility studied how Simultaneous Nitrification Denitrification (SND) coupled with traditional nitrogen removal would be used to meet the state’s current advanced wastewater treatment nutrient criterion. This study examined the effect of these combined processes on the fate and transport of the nitrogen species during the treatment process. The effectiveness of nitrogen removal within the full scale sequential batch reactor system (SBR) and the extent of SND compared to nitrification and denitrification in the nitrogen removal process was also evaluated. Finally, the overall performance of the municipal wastewater treatment facility utilizing these combined processes was evaluated. Overall, this application reduced the total nitrogen to almost 6% of the permitted concentration of 3.0 mg/L. The combination of both processes also resulted in an actual ?concentration 93.7% lower than the acceptable theoretical ?concentration, which also resulted in effluent Total Inorganic Nitrogen nearly 80% lower than the permitted 3.0 mg/L effluent concentration. Further, the process produced a composite Total Nitrogen concentration that was 74% lower than the permitted concentration. This coupling of SND with traditional nitrogen removal resulted in a highly effective process to reduce nitrogen in the municipal wastewater effluent which is also attractive for potential implementation due to the low cost expenditure incurred in its utilization.展开更多
Potassium permanganate (KMnO<sub>4</sub>) has been used widely as an oxidant for remediation of contaminated soil and water systems. The present study evaluates the release of this oxidant from Polycaprola...Potassium permanganate (KMnO<sub>4</sub>) has been used widely as an oxidant for remediation of contaminated soil and water systems. The present study evaluates the release of this oxidant from Polycaprolactone (PCL) polymer as part of a patented controlled release process (CRP) to be applied for targeted removal of contaminants from water. KMnO<sub>4</sub> was encapsulated into PCL at a 1:5 oxidant to polymer ratio and placed in batch reactor systems with reagent water to be evaluated over a 96 hour period. SEM images showed that over time, the number of cavities and their sizes increased on the waxy surface of the PCL polymer. The experimental data from the release of KMnO<sub>4</sub> from PCL was found to fit non-Fickian diffusion model after dissolution (R<sup>2</sup> = 0.93) similar to other systems that describe the dispersal of other oxidants from wax matrices. In addition, the model parameters for data of this present study were also found to be comparable to previous release studies with the same oxidant encapsulated in different wax matrices at similar ratios. Overall, the similarity of release data between the diversity of polymers shows that the controlled release biodegradable polymer utilizing PCL provides effective release of the KMnO<sub>4</sub> with the added benefit biodegradable nature of PCL.展开更多
Simultaneous nitrification denitrification (SND) is a well-established phenomenon in biological nutrient removal activated sludge systems. Study at a municipal wastewater treatment facility sought to determine nitroge...Simultaneous nitrification denitrification (SND) is a well-established phenomenon in biological nutrient removal activated sludge systems. Study at a municipal wastewater treatment facility sought to determine nitrogen removal effectiveness within a full-scale sequential batch reactor (SBR) system utilizing SND in conjunction with traditional nitrogen removal. In addition to characterizing extent of SND, the research examined the ability of SND to meet state-based effluent water quality standards. At the selected facility, the average SND efficiency during a two-month sampling period was 52.8%, paralleling results from similar SBR municipal wastewater systems. The observed SBR system had removal efficiencies > 99% for the influent to effluent -N concentrations. The SND process also resulted in average NO<sub>3</sub>-NO<sub>2</sub>-N concentration that was 82% lower than the theoretical concentration under comparable circumstances. Overall, nitrogen removal for this SBR system was >99% which typified results in other SND systems, but at a higher Total Nitrogen removal rate.展开更多
文摘A Florida wastewater treatment facility studied how Simultaneous Nitrification Denitrification (SND) coupled with traditional nitrogen removal would be used to meet the state’s current advanced wastewater treatment nutrient criterion. This study examined the effect of these combined processes on the fate and transport of the nitrogen species during the treatment process. The effectiveness of nitrogen removal within the full scale sequential batch reactor system (SBR) and the extent of SND compared to nitrification and denitrification in the nitrogen removal process was also evaluated. Finally, the overall performance of the municipal wastewater treatment facility utilizing these combined processes was evaluated. Overall, this application reduced the total nitrogen to almost 6% of the permitted concentration of 3.0 mg/L. The combination of both processes also resulted in an actual ?concentration 93.7% lower than the acceptable theoretical ?concentration, which also resulted in effluent Total Inorganic Nitrogen nearly 80% lower than the permitted 3.0 mg/L effluent concentration. Further, the process produced a composite Total Nitrogen concentration that was 74% lower than the permitted concentration. This coupling of SND with traditional nitrogen removal resulted in a highly effective process to reduce nitrogen in the municipal wastewater effluent which is also attractive for potential implementation due to the low cost expenditure incurred in its utilization.
文摘Potassium permanganate (KMnO<sub>4</sub>) has been used widely as an oxidant for remediation of contaminated soil and water systems. The present study evaluates the release of this oxidant from Polycaprolactone (PCL) polymer as part of a patented controlled release process (CRP) to be applied for targeted removal of contaminants from water. KMnO<sub>4</sub> was encapsulated into PCL at a 1:5 oxidant to polymer ratio and placed in batch reactor systems with reagent water to be evaluated over a 96 hour period. SEM images showed that over time, the number of cavities and their sizes increased on the waxy surface of the PCL polymer. The experimental data from the release of KMnO<sub>4</sub> from PCL was found to fit non-Fickian diffusion model after dissolution (R<sup>2</sup> = 0.93) similar to other systems that describe the dispersal of other oxidants from wax matrices. In addition, the model parameters for data of this present study were also found to be comparable to previous release studies with the same oxidant encapsulated in different wax matrices at similar ratios. Overall, the similarity of release data between the diversity of polymers shows that the controlled release biodegradable polymer utilizing PCL provides effective release of the KMnO<sub>4</sub> with the added benefit biodegradable nature of PCL.
文摘Simultaneous nitrification denitrification (SND) is a well-established phenomenon in biological nutrient removal activated sludge systems. Study at a municipal wastewater treatment facility sought to determine nitrogen removal effectiveness within a full-scale sequential batch reactor (SBR) system utilizing SND in conjunction with traditional nitrogen removal. In addition to characterizing extent of SND, the research examined the ability of SND to meet state-based effluent water quality standards. At the selected facility, the average SND efficiency during a two-month sampling period was 52.8%, paralleling results from similar SBR municipal wastewater systems. The observed SBR system had removal efficiencies > 99% for the influent to effluent -N concentrations. The SND process also resulted in average NO<sub>3</sub>-NO<sub>2</sub>-N concentration that was 82% lower than the theoretical concentration under comparable circumstances. Overall, nitrogen removal for this SBR system was >99% which typified results in other SND systems, but at a higher Total Nitrogen removal rate.