Fe Co Cr Ni Mn high-entropy alloys were produced by mechanical alloying(MA) and vacuum hot pressing sintering(VHPS). Results showed that the nano-crystalline alloy powders were obtained by MA and the corresponding...Fe Co Cr Ni Mn high-entropy alloys were produced by mechanical alloying(MA) and vacuum hot pressing sintering(VHPS). Results showed that the nano-crystalline alloy powders were obtained by MA and the corresponding phase structures were composed of FCC matrices and low amounts of BCC and amorphous phases. After VHPS, the BCC phases almost disappeared, simultaneously with the precipitation of σ phases and M23C6 carbides. An increase of sintering temperature resulted in grain growth of the precipitated phases. As the sintering temperature was increased from 700 to 1000℃, the strain-to-failure of the alloys rose from 4.4% to 38.2%, whereas the yield strength decreased from 1682 to 774 MPa. The bulk FeCoCrNiMn HEAs, consolidated by VHPS at 800℃ and 900℃ for 1 h, showed relatively good combination of strength and ductility.展开更多
基金Project(2014H6005) supported by the Major Industry-Academy Cooperation Program of Fujian Province,ChinaProject(LY17E050003) supported by the Natural Science Foundation of Zhejiang Province,ChinaProject(2016PY015) supported by the Cultivation Foundation of Taizhou University,China
文摘Fe Co Cr Ni Mn high-entropy alloys were produced by mechanical alloying(MA) and vacuum hot pressing sintering(VHPS). Results showed that the nano-crystalline alloy powders were obtained by MA and the corresponding phase structures were composed of FCC matrices and low amounts of BCC and amorphous phases. After VHPS, the BCC phases almost disappeared, simultaneously with the precipitation of σ phases and M23C6 carbides. An increase of sintering temperature resulted in grain growth of the precipitated phases. As the sintering temperature was increased from 700 to 1000℃, the strain-to-failure of the alloys rose from 4.4% to 38.2%, whereas the yield strength decreased from 1682 to 774 MPa. The bulk FeCoCrNiMn HEAs, consolidated by VHPS at 800℃ and 900℃ for 1 h, showed relatively good combination of strength and ductility.