In this study,we developed a microfluidic paper analysis device(μPAD)for distance-based detection of Ag^(+)in water.TheμPAD was manufactured by wax printing method on filter paper.Then,a layer of gold nanoparticles(...In this study,we developed a microfluidic paper analysis device(μPAD)for distance-based detection of Ag^(+)in water.TheμPAD was manufactured by wax printing method on filter paper.Then,a layer of gold nanoparticles(AuNPs)was deposited and ascorbic acid was printed on the channel.In the detection,Ag^(+)was reduced by ascorbic acid and coated on the surface of the AuNPs on the channel,forming Au@Ag core/shell nanoparticles.Based on the capillary flow principle,diff erent concentrations of Ag^(+)formed diff erent distances of color ribbons.Thus,quantitative detection of Ag^(+)can be achieved by measuring the distance of the color ribbon.The detection limit of this method was as low as 1 mg·L^(-1)within 15 min and the interference of common metal ions in water can be eliminated.In conclusion,this method had successfully realized the leap from colorimetry to direct reading,realizing fast read and easy manipulation with low-cost.展开更多
Although magnetic stirring is frequently used to enhance the kinetics for adsorption,chemical and biochemical reactions,the introduction of stirrers inevitably leads to the adsorption of analytes and thus interferes w...Although magnetic stirring is frequently used to enhance the kinetics for adsorption,chemical and biochemical reactions,the introduction of stirrers inevitably leads to the adsorption of analytes and thus interferes with the efficiency of the chemical process or reaction.In this work,magnetic Fe_(3) O_(4) nanorods with tunable length-to-diameter ratio were synthesized via a hydrothermal method and used as templates for the in-situ depositing of MIL-100(Fe) and gold nanoparticles.Such nanorod-based material can not only function as an adsorbent,nanozyme,and a heterogeneous catalyst for corresponding applications but also serve as a magnetic nanostirrer to enhance kinetics.As a proof-of-concept,the capture of bacteria pathogen,mimic-peroxidase-based colorimetric detection of hydrogen peroxide,and the catalytic reduction of selected organic pollutants were conducted using the as-synthesized Fe_(3) O_(4)@MIL-100(Fe)-Au nanostirrer with and without magnetic field.The results show that the rates of bacteria capture,mimetic enzyme reaction and catalysis were tremendously expedited.We believe this magnetic field-assisted approach holds great promise for future applications,because,not only does it eliminate the use of external magnetic stirrers and thereby decrease the risk of foreign pollution but also,is adaptable for nanoscale reaction systems where conventional stirring is not applicable due to size limitations.展开更多
基金supported by the Graduate Student Innovation Project of China University of Petroleum(East China)in 2020(No.YCX2020054)the financial support by the National Natural Science Foundation of China(No.21876206,21505157)+1 种基金the Key Fundamental Research Fund of Shandong Province(ZR2020ZD13)the Youth Innovation and Technology projects of Universities in Shandong Province(2020KJC007,ZR2020MB064)
文摘In this study,we developed a microfluidic paper analysis device(μPAD)for distance-based detection of Ag^(+)in water.TheμPAD was manufactured by wax printing method on filter paper.Then,a layer of gold nanoparticles(AuNPs)was deposited and ascorbic acid was printed on the channel.In the detection,Ag^(+)was reduced by ascorbic acid and coated on the surface of the AuNPs on the channel,forming Au@Ag core/shell nanoparticles.Based on the capillary flow principle,diff erent concentrations of Ag^(+)formed diff erent distances of color ribbons.Thus,quantitative detection of Ag^(+)can be achieved by measuring the distance of the color ribbon.The detection limit of this method was as low as 1 mg·L^(-1)within 15 min and the interference of common metal ions in water can be eliminated.In conclusion,this method had successfully realized the leap from colorimetry to direct reading,realizing fast read and easy manipulation with low-cost.
基金financially supported by the National Natural Science Foundation of China (No.21876206)the Science and Technolgy Projects of Qingdao (No.21-1-4-sf-7-nsh)+2 种基金the National Key Technologies R&D Program of ChinaKey Projects of Intergovernmental International Innovation Cooperation (No.2018YFE0118200)the Shandong Key Research and Development Project (Nos.2019JZZY010506, ZR2020ZD13)。
文摘Although magnetic stirring is frequently used to enhance the kinetics for adsorption,chemical and biochemical reactions,the introduction of stirrers inevitably leads to the adsorption of analytes and thus interferes with the efficiency of the chemical process or reaction.In this work,magnetic Fe_(3) O_(4) nanorods with tunable length-to-diameter ratio were synthesized via a hydrothermal method and used as templates for the in-situ depositing of MIL-100(Fe) and gold nanoparticles.Such nanorod-based material can not only function as an adsorbent,nanozyme,and a heterogeneous catalyst for corresponding applications but also serve as a magnetic nanostirrer to enhance kinetics.As a proof-of-concept,the capture of bacteria pathogen,mimic-peroxidase-based colorimetric detection of hydrogen peroxide,and the catalytic reduction of selected organic pollutants were conducted using the as-synthesized Fe_(3) O_(4)@MIL-100(Fe)-Au nanostirrer with and without magnetic field.The results show that the rates of bacteria capture,mimetic enzyme reaction and catalysis were tremendously expedited.We believe this magnetic field-assisted approach holds great promise for future applications,because,not only does it eliminate the use of external magnetic stirrers and thereby decrease the risk of foreign pollution but also,is adaptable for nanoscale reaction systems where conventional stirring is not applicable due to size limitations.