期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
SAR-LtYOLOv8:A Lightweight YOLOv8 Model for Small Object Detection in SAR Ship Images
1
作者 conghao niu Dezhi Han +1 位作者 Bing Han Zhongdai Wu 《Computer Systems Science & Engineering》 2024年第6期1723-1748,共26页
The high coverage and all-weather capabilities of Synthetic Aperture Radar(SAR)image ship detection make it a widely accepted method for maritime ship positioning and identification.However,SAR ship detection faces ch... The high coverage and all-weather capabilities of Synthetic Aperture Radar(SAR)image ship detection make it a widely accepted method for maritime ship positioning and identification.However,SAR ship detection faces challenges such as indistinct ship contours,low resolution,multi-scale features,noise,and complex background interference.This paper proposes a lightweight YOLOv8 model for small object detection in SAR ship images,incorporating key structures to enhance performance.The YOLOv8 backbone is replaced by the Slim Backbone(SB),and the Delete Medium-sized Detection Head(DMDH)structure is eliminated to concentrate on shallow features.Dynamically adjusting the convolution kernel weights of the Omni-Dimensional Dynamic Convolution(ODConv)module can result in a reduction in computation and enhanced accuracy.Adjusting the model’s receptive field is done by the Large Selective Kernel Network(LSKNet)module,which captures shallow features.Additionally,a Multi-scale Spatial-Channel Attention(MSCA)module addresses multi-scale ship feature differences,enhancing feature fusion and local region focus.Experimental results on the HRSID and SSDD datasets demonstrate the model’s effectiveness,with a 67.8%reduction in parameters,a 3.4%improvement in AP(average precision)@0.5,and a 5.4%improvement in AP@0.5:0.95 on the HRSID dataset,and a 0.5%improvement in AP@0.5 and 1.7%in AP@0.5:0.95 on the SSDD dataset,surpassing other state-of-the-art methods. 展开更多
关键词 SAR ship detection MSCA deep learning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部